
XPEDITER/TSO and XPEDITER/IMS
COBOL User’s Guide

Release 7.4

ii XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide

This docum

Copyright 1
Copyright L

U.S. GOVER
restrictions
227.7202-1(
FAR 52.227-

This produc
disclosure, o
Corporation
conditions o

XPEDITER, C
trademarks o

IBM, AD/Cy
VisualAge, a

CA-MIM, CA
trademarks o

Adobe ® Acr
Adobe and A

All other co

Doc. CWXTUC

May 17, 2005
Please direct questions about XPEDITER/TSO and XPEDITER/IMS
or comments on this document to:

XPEDITER/TSO and XPEDITER/IMS Technical Support
Compuware Corporation

One Campus Martius
Detroit, MI 48226-5099

1-800-538-7822

Outside the USA and Canada, please contact
your local Compuware office or agent.

ent and the product referenced in it are subject to the following legends:

996-2005 Compuware Corporation. All rights reserved. Unpublished rights reserved under the
aws of the United States.

NMENT RIGHTS-Use, duplication, or disclosure by the U.S. Government is subject to
as set forth in Compuware Corporation license agreement and as provided in DFARS
a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (OCT 1988), FAR 12.212(a) (1995),
19, or FAR 52.227-14 (ALT III), as applicable. Compuware Corporation.

t contains confidential information and trade secrets of Compuware Corporation. Use,
r reproduction is prohibited without the prior express written permission of Compuware
. Access is limited to authorized users. Use of this product is subject to the terms and
f the user's License Agreement with Compuware Corporation.

ode Coverage, File-AID, Abend-AID, FrontLine, and Compuware Shared Services are
r registered trademarks of Compuware Corporation.

cle, CICS, DB2, DFSMS, DFSORT, IMS, Language Environment, MQSeries, MVS, OS/390,
nd z/OS are trademarks of International Business Machines Corporation.

-ROSCOE, ENDEVOR, LIBRARIAN, PANEXEC, and PANVALET are trademarks or registered
f Computer Associates International, Inc.

obat ® Reader copyright © 1987-2005 Adobe Systems Incorporated. All rights reserved.
crobat are trademarks of Adobe Systems Incorporated.

mpany and product names are trademarks or registered trademarks of their respective owners.

7E

iii

Contents
Figures . ix

Tables . xv

Introduction . xvii
Manual Organization . xvii
Intended Audience .xviii
Accessing Other Products .xviii
Notation Rules .xviii
Related Publications .xviii
Documentation Availability . xx

FrontLine Support Website . xx
Online Documentation . xx
World Wide Web . xx

Getting Help . xx

Chapter 1. XPEDITER/TSO Overview . 1-1
Operating Environment Support .1-1
Modes of Operation .1-2

Interactive Mode .1-2
Batch Mode .1-2

Interactive Debugging and Testing Features .1-3
XPEDITER/TSO Input and Output .1-5
Types of Programs Supported .1-5
LOGON Region Size Requirements .1-6
Restrictions and Warnings .1-6

Chapter 2. User Interface to XPEDITER/TSO . 2-1
PF Keys .2-3
Command Processing .2-3

Lowercase Conversion. .2-4
Attention Key Processing .2-4

Chapter 3. Quick Sample Debugging Session . 3-1
Preparing the Programs .3-1
Starting the Debugging Session .3-1
Setting Breakpoints .3-3
Displaying File Information .3-4
Displaying Data Values. .3-4
Debugging Subroutines .3-7
Analyzing Data Flow. .3-7
Tracing Logic Flow .3-9
Monitoring and Reviewing the Execution Path. .3-9

Chapter 4. Getting Started . 4-1
The XPEDITER/TSO Primary Menu .4-1
Preparing Your Programs .4-3

Converting Your Compile JCL .4-5
Starting an Interactive Session .4-15

Using Profiles. .4-16
Invoking the Test Session .4-16
Allocating the Required Files. .4-18

iv XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Using XPEDITER/TSO Commands in Interactive Mode 4-20
Starting a Batch Connect Session . 4-20

Processing the JCL . 4-21
Converting and Submitting the JCL . 4-22
Test Session Management Using Scripts . 4-39
Creating and Editing Scripts . 4-41
Saving And Using Generated Scripts . 4-41

Starting a Session With Batch JCL . 4-43
Setting Up the Batch JCL . 4-45
Creating Batch JCL for XPEDITER/TSO Options 4-47

Test Session Management Using Scripts . 4-48
Initial Scripts . 4-49
Test Scripts . 4-50
Post Scripts . 4-50
Abend Scripts . 4-50
Creating and Editing Scripts . 4-50
Saving and Using Generated Scripts . 4-51

Accessing Other Systems From XPEDITER/TSO . 4-54
Accessing File-AID for DB2 . 4-54
Connecting to CICS . 4-56

Chapter 5. Debugging Interactively . 5-1
The Source Display . 5-1
Using XPEDITER/TSO Commands . 5-2
Controlling Program Execution . 5-3

Commands That Control Program Execution. 5-3
Entering Program Control Commands . 5-4
Setting Conditional Breakpoints . 5-8

Inspecting Program Data. 5-11
Displaying and Modifying Program Variables. 5-11
Displaying and Modifying Memory and Registers 5-21

Analyzing Program Logic . 5-23
Identifying Program Structure . 5-24
Tracing the Flow of Control. 5-34
Monitoring Execution Coverage . 5-36
Monitoring and Reviewing the Execution Path 5-37

Modifying Program Logic . 5-38
Bypassing Code With the SKIP Command . 5-39
Inserting Statements . 5-40
Redirecting Logic . 5-42

Examining Files . 5-43
Using XPEDITER for DB2 Extension. 5-44

Browsing and Editing DB2 Table Data. 5-44
Analyzing SQL Statement Execution . 5-45
Inserting Program SQL Statements . 5-45

Expanding EXEC SQL and EXEC CICS Statements . 5-48
Debugging a Sourceless Program . 5-50

Accessing a Sourceless Main Program . 5-50
Accessing a Sourceless Subprogram . 5-52
Using XPEDITER/TSO Commands for Sourceless Debugging. 5-52

Creating Pseudo-Assembler Source . 5-54
Pseudo-Source Creation for a Main Program. 5-54
Pseudo-Source Creation for a Subprogram . 5-55
Debugging a Pseudo-Source Program . 5-55

Displaying Environmental Data . 5-57
IDMS. 5-57
DB2. 5-57

 v
IMS. .5-57
VSAM .5-57

Chapter 6. Handling Run-Time Errors . 6-1
Displaying the Abend-AID Snapshot Report .6-2

Browsing the Snapshot Report .6-2
Viewing the Log .6-3
Displaying HELP Information .6-4
Analyzing the Problem .6-5
Applying Fixes .6-5
Obtaining a Memory Dump .6-5

Chapter 7. Debugging With XPEDITER/IMS . 7-1
Starting XPEDITER/IMS .7-1

Debugging an MPP Program .7-2
Debugging a BMP/IFP Program .7-7

What to Do When Intercepts Cannot Be Set .7-9
Functions Supported. .7-11

Conversational and Nonconversational Transactions7-11
Response Mode and Nonresponse Mode .7-11
WFI and Non-WFI Transactions .7-11

Types of Programs You Can Debug .7-11
Message Processing Programs .7-12
Batch Message Processing Programs .7-12
Fast Path Programs .7-12

Using XPEDITER/IMS Effectively .7-12
MPP Test Setup .7-13
Scheduling Difficulties .7-13
Stopping the XPEDITER/IMS Dependent Region7-13
Fast Path Caution .7-14

Abends and Recovery Processing .7-14
XPEDITER/IMS Detach Region Facility .7-15

Chapter 8. Debugging With DB2 Stored Procedures . 8-1
DB2 Stored Procedure Requirements .8-1
Overview of DB2 Stored Procedure Support. .8-1
Starting an XPEDITER/TSO DB2 Stored Procedure Debugging Session Using

Batch Connect .8-2
Debugging a DB2 Stored Procedure .8-4

Accessing the XPEDITER/TSO Setup Menu Screen8-6
Specifying the JCL. .8-6

Connecting to a Job .8-10
Editing the JCL .8-10
Debugging a Client Application and a DB2 Stored Procedure Together8-11
DB2 Stored Procedure Security Considerations .8-11

Batch Connect Security Check .8-12
DB2 Subsystems to Debug. .8-12
Optional Security Access Facility (SAF) Calls .8-12
Security Exit. .8-12

Foreground Debugging of DB2 Stored Procedures .8-12
Exiting an In-Progress Stored Procedure Test .8-14

Chapter 9. Debugging Programs With Special Conditions 9-1
Checkpoint/Step Restart .9-1

Scenario One .9-1
Scenario Two .9-1

31-bit Support .9-1

vi XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Code Generator Support . 9-1
Optimized Code Support . 9-2
VS COBOL II Releases 3.0 and Above (COBOL 85) Support. 9-2
Mixed Language Support . 9-2
Subroutine Testing Support . 9-2
Database Support. 9-3

IDMS/DB, ADABAS, SUPRA, DATACOM/DB, System 2000. 9-3
IMS/DB . 9-3
DBT HSSR . 9-3
DB2. 9-4

Shared DL/I Database (DFHDRP) Support. 9-5
SORT EXIT Support . 9-5
PANEXEC Support. 9-7
Language Environment Support . 9-7

Usage Note . 9-7
Third-Party Package Support . 9-7
Global Handling Of Special Conditions . 9-7
Using MQSeries With XPEDITER/TSO . 9-7

Appendix A. Using the File Allocation Utility . A-1
Accessing the File Allocation Utility . A-1

Creating a New File List . A-3
Editing an Existing File List . A-3
Copying Existing File Lists, JCL, or CLISTs . A-3
Saving a File List. A-4

Using the Edit File List Screens . A-4
Primary Commands . A-6
Line Commands. A-6
Using the COPY Command on Edit File List Screens A-7
Edit File List 1 Screen - DDNAME, DSNAME, and Disposition A-7
Edit File List 2 Screen - Space and Catalog Information A-8
Edit File List 2A Screen - SMS Parameters . A-10
Edit File List 3 Screen - DCB Parameters . A-10
Displaying File Parameters. A-12

Converting JCL to a File List . A-14
Things to Know About JCL Expansion . A-16
Unsupported Keywords and Subparameters . A-16

Types of Files That Can Be Allocated . A-17
Existing Datasets . A-17
New Datasets . A-18
Dummy Files . A-18
Temporary Files . A-18
In-Stream Data . A-18
Allocating Files to the Terminal. A-19
SYSOUT Files . A-19
Generation Datasets. A-19
ISAM Files. A-20

Appendix B. XPEDITER/TSO Environment Test Screens . B-1
Standard Test Screen – Environments Menu - Option 1 B-4
Dialog Test Screen – Environments Menu - Option 2 B-6

Effect of Dialog Program Intercepts. B-8
IMS Test Screen – Environments Menu - Option 3 . B-11
BTS Test Screen – Environments Menu - Option 4. B-14
Hogan BATCHPEM Test Screen – Environments Menu - Option 5 B-17
Hogan DLIPEM Test Screen – Environments Menu - Option 6 B-19
Hogan IMSPEM Test Screen – Environments Menu - Option 7 B-21

 vii
MPP Test Screen – Environments Menu - Option 8. .B-25
BMP/IFP Test Screen – Environments Menu - Option 9 B-30
Hogan IMSPEM Test Screen – Environments Menu - Option 10.B-34
Hogan BMPPEM Test Screen – Environments Menu - Option 11B-38
DB2 Stored Procedures – Environments Menu - Option 12.B-41

Appendix C. Specifying Setup Options . C-1
Setup Options Available Under XPEDITER/TSO Environments C-3
Setup Options Available Under XPEDITER/IMS Environments. C-3
Using the RESTORE Command . C-5
Common Setup Screens . C-5

Load Module Libraries Screens . C-6
DDIO Files Screen . C-7
Test Script Libraries Screen . C-8
Log, Script, and Document Dataset Screens . C-9
DB2 System Name and DSNLOAD Libraries Screen C-14
PANEXEC Libraries Screen. C-16

IMS Setup Menu . C-16
IMS Parameter Lists Screen . C-17
IMS Load (DFSRESLB) Libraries Screen . C-18
PSB and DBD Libraries Screen . C-19
ACB Libraries Screen . C-19
IMS Preload List Screen . C-20
Logging and Recovery (IEFRDER) Dataset Screen C-21

BTS Setup Menu . C-25
BTS Parameter Lists Screen . C-26
BTS Load Libraries Screen . C-27
MFS Libraries (Format) Screen. C-27
BTS Output (BTSOUT Dataset) Screen. C-28

Hogan Setup Menu . C-35
Hogan Activity Log (Monitor Dataset) Screen . C-36

Appendix D. Specifying Session Defaults . D-1
The Defaults Menu . D-1
Specifying PF Key Definitions. D-1
Specifying Screen Colors. D-3
Specifying Other Default Values. D-5
Specifying User Profiles . D-6

Using the MERGE Command . D-8
Using the LOCATE Command . D-8
Using the PROFILE Command . D-8

Displaying Test Session Settings . D-8

Appendix E. XPEDITER/TSO Utilities . E-1
Displaying Available Memory (REGION SIZE) .E-1
Displaying File Allocations (LIST ALLOCATES) .E-2
DDIO File Facility .E-3
CONVERT PROFILE .E-3
CONVERT INCLUDE .E-4
Selecting Alternate Profiles (MERGE PROFILE) .E-5

Appendix F. Binding the Application Plan or Package . F-1
Bind Facility Menu . F-1
Bind Plan Facility Screen . F-2

Bind Plan Setup Menu. F-4
DBRM Libraries Screen . F-5
Bind Plan PKLIST Setup Screen . F-6

viii XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Bind Package Facility Screen .F-7
Bind Plan Facility Screen for Long Names .F-9

Bind Plan Setup Menu .F-12
DBRM Libraries Screen. .F-12
Bind Plan PKLIST Setup Screen for Long Names .F-13

Bind Package Facility Screen .F-14

Appendix G. DBCS Support . G-1
Terminal Support . G-1
Program Support . G-2
DBCS Fields on the Source Display . G-2
Scrolling DBCS Data . G-3

Scrolling Mixed Fields . G-3
Scrolling DBCS Fields . G-5

Manipulating DBCS Data . G-6
Typing Over Data. G-6
Inserting Data . G-7
Deleting Data . G-8
Moving Data . G-9

Appendix H. COBOL-Structure Keywords . H-1

Appendix I. Debugging a Client Application and DB2 Stored Procedure I-1

Glossary . G-1

Index . I-1

ix
Figures

1-1. COBOL Program in the Source Display Screen .1-3
2-1. XPEDITER/TSO COBOL Program in the Source Screen .2-1
2-2. Attention Key Processing Options .2-4
3-1. Standard Test Screen. .3-2
3-2. Source Screen Showing TRIMAIN Program .3-3
3-3. Entering a Before Breakpoint at Statement 43 .3-3
3-4. Program Stopped at Before Breakpoint on Statement 43. .3-4
3-5. File Attributes Displayed by the SHOW FILE Command. .3-4
3-6. Displaying the Data Content of N-CNTR. .3-5
3-7. Message Indicating That the Index Boundary Has Been Reached3-5
3-8. TRIMAIN After Entering the LOCATE* Command .3-6
3-9. Adding an Explicit Keep (WORK-REC) to the Keep Window 3-6

3-10. Displaying a Variable in a Keep Window. .3-6
3-11. Displaying the Linkage Section in the Called Module TRITST 3-7
3-12. Finding Statements That Reference TST-REC. .3-8
3-13. Result of FIND TYPE-OF-TRIANGLE MOD EXCLUDE Command.3-8
3-14. Tracing is Paused for After Breakpoint in Calling Moduel TRIMAIN 3-9
3-15. Review Mode Execution .3-9

4-1. Primary Menu for XPEDITER .4-2
4-2. Program Preparation Menu .4-4
4-3. Convert Compile JCL Screen .4-6
4-4. Compile JCL Before Conversion .4-7
4-5. Compile JCL After Conversion. .4-8
4-6. Compile Facility Screen .4-9
4-7. General Settings Screen .4-11
4-8. DB2 Precompile Step Screen. .4-12
4-9. CICS Translation Step Screen .4-13

4-10. Compile Step Screen. .4-13
4-11. Linkedit Step Screen .4-15
4-12. Environments Menu. .4-17
4-13. Process Execute JCL Screen. .4-22
4-14. Select Job Step Screen .4-23
4-15. Completed Select Job Step Screen .4-23
4-16. Edit Screen .4-27
4-17. Process Execute JCL for Batch Connect Under ROSCOE .4-32
4-18. Process JCL Screen for Batch Connect Under ROSCOE .4-33
4-19. Setup Menu Screen for Batch Connect Under ROSCOE .4-34
4-20. Select Job Step Screen for Batch Connect Under ROSCOE 4-34
4-21. Completed Select Job Step Screen for Batch Connect Under ROSCOE4-35
4-22. JCL to Run a Program Without XPEDITER/TSO .4-43
4-23. JCL to Run a Program With XPEDITER/TSO .4-44
4-24. Batch Connect Under ROSCOE SCRIPT DATASET .4-52
4-25. Linkage Section of the TRIRPT Program. .4-53
4-26. Script with MOVES Passing Values from TRIMAIN to TRIRPT Variables 4-53
4-27. Sample Script .4-53
4-28. TSO to CICS Connect Screen .4-56

5-1. XPEDITER/TSO Source Display Screen. .5-2
5-2. Result of Using the SHOW BREAKS Command .5-2
5-3. Result of Setting BEFORE ALL PARA and AFTER 4651 Breakpoints.5-5
5-4. Result of Entering Qualified Breakpoint .5-6
5-5. Result of the INTERCEPT Command .5-6
5-6. Both Before and After Breakpoints Set on Line 46. .5-7
5-7. Result of Entering the GO Command .5-7
5-8. Single Stepping Through Code Within the Current Module 5-9
5-9. Stepping into a Called Module Using the GO 1 Command 5-9

5-10. Reaching the When Breakpoint .5-10

x XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
5-11. Keep Window Displaying Automatic Keeps. .5-12
5-12. Keep and Peek Windows .5-13
5-13. Result of Entering the KEEP Command for WORK-REC and N-N-C.5-14
5-14. Result of Entering the KEEP Command on a Table Element N-CNTR 5-15
5-15. Result of Entering the KEEP Command on a Table Element N-CNTR(TX)5-15
5-16. Browsing Through the Table Elements .5-15
5-17. Result of the SHOW INDEX Command. .5-15
5-18. Result of Entering PEEK WORK-REC .5-16
5-19. Result of Entering PEEK N-N-C-TABLE (Shows MORE>Sign and

Column Template) .5-16
5-20. Result of Entering PEEK N-N-C (Shows OCCURS Field and Column Template) .5-17
5-21. Result of Entering PEEK CHECK-SUM (Shows PACKED Decimal Format) 5-17
5-22. Result of Entering PEEK CHAR-PTR (Shows HALFWORD Format)5-17
5-23. Result of Entering PEEKE Command on the Group Level Data Item

WORK-REC .5-17
5-24. Result of Entering PEEKH Command on the Group Data Item SIDE-A 5-17
5-25. The Log Entry Following Execution of a PEEK Command 5-18
5-26. Displaying Variable WORK-REC Prior to Typing Over Value5-19
5-27. Typing Over Value for Variable WORK-REC .5-19
5-28. An Example of MOVE Entered as a Primary Command .5-20
5-29. Inserting MOVE Command .5-20
5-30. Before Breakpoint Set on Line 50 .5-20
5-31. Source Display After GO is Entered .5-21
5-32. Result of an Inserted MOVE Command. .5-21
5-33. Result of Entering the MEMORY Command .5-22
5-34. Result of Entering MEMORY R13% .5-22
5-35. Result of Entering MEMORY R9%+4 .5-23
5-36. Result of Entering the GPREGS Command .5-23
5-37. Result of Entering FIND SUBS .5-25
5-38. Result of a Repeat FIND .5-25
5-39. Result of Finding N-CNTR With DIRECT and ALIAS. .5-26
5-40. Scrolling to Modifications of N-CNTR .5-27
5-41. Finding IN-PASS1 INDIRECT With EXCLUDE. .5-27
5-42. FIND INDIRECT - First Level of Indirection. .5-28
5-43. FIND INDIRECT - Second Level of Indirection .5-28
5-44. Result of FIND With COBOL-Structure Keyword INPUT.5-29
5-45. Result of a Repeat FIND for INPUT Keyword .5-29
5-46. Result of FIND DLI With EXCLUDE. .5-30
5-47. Result of Issuing the NOLINES Command. .5-31
5-48. Result of FIND Data String With IN PARAGRAPH. .5-31
5-49. Result of Excluding ALL Lines .5-32
5-50. Result of FIND SUBS Command After EXCLUDE ALL Command 5-32
5-51. Using the FIND CSR Command .5-33
5-52. Result of Entering FIND CSR .5-33
5-53. Data Format When Logging The Results Of A FIND Command5-34
5-54. Session Log for the TRACE MODULES Command. .5-35
5-55. Result of Entering the SHOW PREVIOUS Command .5-35
5-56. Result of Entering the COUNT ALL PARAGRAPHS and GO Commands 5-36
5-57. Result of Entering the SHOW COUNT Command .5-37
5-58. Review Mode with a Keep Window Opened .5-38
5-59. Result of Entering the SKIP TRITST: Command. .5-39
5-60. Inserted Statements Must Precede the COBOL Statements That Are Skipped . . .5-40
5-61. Result of Executing Inserted Statements and Taking PAUSE5-40
5-62. Syntax Checking for Inserted Statements .5-41
5-63. Inserting Statements Following a Conditional Construct5-41
5-64. Result of Entering teh GOTO Command. .5-42
5-65. Altering Path by Modifying Data .5-43
5-66. SHOW ALLOCATE Screen .5-44
5-67. Using the FADB2 EXPLAIN Line Command .5-45
5-68. SQL Source Analysis Screen .5-45
5-69. Expanding an EXEC SQL Statement Using the G(en) Line Command.5-49

Figures xi
5-70. Expanded EXEC SQL Statement. .5-49
5-71. Before and After Breakpoints Set on an Unexpanded EXEC SQL Statement 5-50
5-72. Before and After Breakpoints Shown on a Genned EXEC SQL Statement 5-50
5-73. Log Showing No Source Message for a Driver Program .5-51
5-74. AT Display Screen .5-51
5-75. GPREGS Window on the AT Display Screen .5-53
5-76. SHOW ACTIVE Display Screen. .5-53
5-77. No Source Message .5-54
5-78. Pseudo-Assembler on Source Screen. .5-55
5-79. Regenerated Pseudo-Assembler Source. .5-56

6-1. XPEDITER/TSO Responding to a S0C7 Abend .6-1
6-2. Abend-AID Snapshot Report Header .6-2
6-3. Snapshot Report Diagnostic Section .6-3
6-4. Diagnostic Summary in the Log. .6-4
6-5. HELP Information on S0C7 .6-5
7-1. MPP Program Test Screen .7-2
7-2. Second MPP Program Test Screen. .7-4
7-3. BMP/IFP Program Screen .7-7
7-4. Intercepts Screen. .7-10
8-1. XPEDITER/TSO Primary Menu .8-2
8-2. XPEDITER/TSO Process DB2 Stored Procedures Screen .8-4
8-3. XPEDITER/TSO Setup Menu Screen .8-6
8-4. Process Execute JCL Screen. .8-7
8-5. XPEDITER/TSO Select Job Step Screen .8-8
8-6. XPEDITER/TSO Select Job Step Screen .8-11
8-7. Sample Edit JCL Screen. .8-11
8-8. DB2 Stored Procedure Screen (2.12) .8-13
8-9. Test Screen During Stored Procedure Testing. .8-13

8-10. Source Display for Stored Procedure Test. .8-14
8-11. Stored Procedure Intercept In Progress Message .8-14
8-12. Error Messages from Stored Procedure Test Exit .8-14
A-1. Program Preparation Menu . A-2
A-2. Edit File List Screen. A-2
A-3. Copy Option Screen . A-4
A-4. Edit File List Screens Without SMS. A-5
A-5. Edit File List Screens With SMS . A-5
A-6. Copy Screen—Specifying the DSNAME . A-7
A-7. Edit File List 1 Screen—DDNAME, Dataset Name, and Disposition A-8
A-8. Edit File List 2 Screen—Space and Catalog Information . A-9
A-9. Edit File List 2A Screen—SMS Parameters . A-10

A-10. Edit File List 3 Screen—DCB Parameters . A-11
A-11. File PARMS Menu . A-12
A-12. Allocation PARMS Screen (SA) . A-13
A-13. DCB PARMS Screen (SD). A-13
A-14. SYSOUT PARMS Screen (SO). A-14
A-15. Protection PARMS Screen (SP) . A-14
A-16. Select DDNAME Screen . A-15
A-17. Allocate/Copy (Errors) Screen. A-17

B-1. XPEDITER/TSO Environment Menu .B-1
B-2. Diagram of the Execution Environment .B-2
B-3. Standard Environment Screen .B-4
B-4. Dialog Test Screen. .B-6
B-5. XPPISPFT - Invoke Dialog Function/Selection Panel .B-9
B-6. Dialog Test Primary Option Menu .B-10
B-7. ISR@PRIM - Invoke Dialog Function/Selection Menu .B-11
B-8. IMS Test Screen. .B-11
B-9. BTS Test Screen .B-14

B-10. BTS Test Screen 2 .B-15
B-11. BTS Transaction/Program Menu. .B-16
B-12. Hogan BATCHPEM Screen .B-18
B-13. Displaying the SYSIN Dataset. .B-18

xii XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
B-14. Hogan DLIPEM Screen .B-20
B-15. Displaying the SYSIN Dataset. .B-21
B-16. Hogan IMSPEM Screen .B-22
B-17. Hogan IMSPEM Screen 2 .B-23
B-18. BTS Transaction/Program Menu .B-24
B-19. MPP Test Screen .B-26
B-20. MPP Test Screen 2. .B-27
B-21. Intercepts Screen. .B-29
B-22. BMP/IFP Screen. .B-31
B-23. Intercepts Screen. .B-33
B-24. Hogan IMSPEM Screen .B-34
B-25. Hogan IMSPEM Test Screen 2. .B-35
B-26. Intercepts Screen. .B-37
B-27. Hogan BMPPEM Screen .B-38
B-28. Displaying the SYSIN Dataset. .B-39
B-29. Intercepts Screen. .B-40
B-30. DB2 Stored Procedure Screen (2.12) .B-42
C-1. XPEDITER/TSO Environments Menu. C-1
C-2. Hogan IMSPEM Test Screen . C-2
C-3. XPEDITER/TSO IMSPEM Setup Menu . C-2
C-4. XPEDITER/IMS BMPPEM Setup Menu . C-4
C-5. Standard Setup Menu Screen . C-5
C-6. First Load Module Libraries Screen. C-6
C-7. Third Load Module Libraries Screen. C-7
C-8. DDIO Files Screen . C-8
C-9. Test Script Libraries Screen . C-9

C-10. Log/Script/Document Dataset Screen. C-10
C-11. Data Set Disposition Screen Displayed Before the Debugging Session Begins . . C-12
C-12. Data Set Disposition Screen Displayed After the Debugging Session is Ended . . C-13
C-13. DSNLOAD LIbraries Screen. C-15
C-14. PANEXEC Libraries Screen . C-16
C-15. IMS Setup Menu Screen . C-17
C-16. IMS Parameter Lists Screen. C-17
C-17. IMS DFSRESLB Libraries Screen . C-18
C-18. PSB/DBD Libraries Screen . C-19
C-19. ACB Libraries Screen. C-20
C-20. IMS Preload List Screen . C-21
C-21. IEFRDER Dataset Screen . C-21
C-22. IMSMON Dataset Screen . C-24
C-23. VSAM Buffer Pool Screen . C-24
C-24. IMSERR Dataset Screen . C-25
C-25. BTS Setup Menu . C-26
C-26. BTS Parameter Lists Screen . C-26
C-27. BTS Load Libraries Screen. C-27
C-28. MFS Libraries Screen . C-28
C-29. BTSOUT Dataset Screen . C-28
C-30. BTSPUNCH Dataset Screen. C-31
C-31. BTSDEBUG Dataset Screen . C-32
C-32. QIOPCB Dataset Screen . C-33
C-33. QALTPCB Dataset Screen . C-34
C-34. QALTRAN Dataset Screen . C-35
C-35. Hogan Setup Menu. C-36
C-36. Hogan Monitor Dataset Screen . C-36
C-37. Hogan Print Dataset Screen . C-39
C-38. Hogan SNAPDD Dataset Screen . C-39
C-39. Hogan SYSPRINT Dataset Screen . C-40
D-1. XPEDITER/TSO Defaults Menu . D-1
D-2. XPEDITER PF Key Definitions and Labels - Primary Keys Screen D-2
D-3. XPEDITER PF Key Definitions and Labels - Alternate Keys Screen D-2
D-4. ISPF Color Defaults Screen . D-3
D-5. Source Color Defaults/1 Screen . D-4

Figures xiii
D-6. Changing Source Color Defaults . D-4
D-7. Tutorial Color Defaults Screen . D-5
D-8. Changing Tutorial Color Defaults . D-5
D-9. Specifying Other Default Values . D-6

D-10. XPEDITER Profile Screen . D-7
D-11. SHOW SET/OPTIONS First Screen . D-9
D-12. SHOW SET/OPTIONS Second Screen . D-9
D-13. SHOW SET/OPTIONS Third Screen . D-10
D-14. SHOW SET/OPTIONS Fourth Screen . D-10
D-15. SHOW SET/OPTIONS Fifth Screen . D-10

E-1. XPEDITER/TSO Utilities Menu .E-1
E-2. XPEDITER/TSO Storage Specifications .E-2
E-3. List Allocates Screen .E-3
E-4. CONVERT PROFILE Release 5.1 Screen .E-4
E-5. CONVERT INCLUDE Screen. .E-5
E-6. Select Alternate Profiles Screen. .E-5
E-7. MERGE PROFILE Screen .E-6
F-1. Bind Facility Menu .F-1
F-2. Bind Plan Facility Screen .F-2
F-3. Bind Plan Setup Menu .F-5
F-4. DBRM Libraries Screen .F-6
F-5. Bind Plan PKLIST Setup Screen. .F-7
F-6. Bind Package Facility Screen. .F-8
F-7. Bind Plan Facility Screen for Long Names (Top Portion) .F-9
F-8. Bind Plan Facility Screen for Long Names (Bottom Portion).F-10
F-9. Bind Plan Setup Menu .F-12

F-10. DBRM Libraries Screen .F-13
F-11. Bind Plan PKLIST Setup Screen. .F-14
F-12. Bind Package Facility Screen (Top Portion) .F-15
F-13. Bind Package Facility Screen (Middle Portion). .F-15
F-14. Bind Package Facility Screen (Bottom Portion) .F-16
G-1. SBCS Example 1—Scrolling the Sample String 14 Bytes Left G-3
G-2. DBCS Example 2—Scrolling the Sample String 5 Bytes Left G-4
G-3. DBCS Example 3—Scrolling the Sample String 6 Bytes Left G-4
G-4. DBCS Example 4—Scrolling the Sample String 5 Bytes Left G-4
G-5. DBCS Example 5—Scrolling the Sample String 9 Bytes Left G-5
G-6. DBCS Example 6—Scrolling the Sample String 2 Bytes Left G-5
G-7. DBCS Example 7—Scrolling the Sample String 9 Bytes Left G-6
G-8. Example 8—Typing SBCS Data Over DBCS Data . G-6
G-9. Example 9—Typing SBCS Character 1 Over DBCS Charter D1 G-7

G-10. Example 10—Inserting DBCS Characters in a DBCS Field. G-7
G-11. Example 11—Inserting DBCS Character D1 in Bytes 4 and 5 G-8
G-12. Example 12—Display of Behavior When Deleting Characters G-8
G-13. Example 13—Using the DELETE Key to Delete DBCS Characters G-8
G-14. Example 14—Deleted Characters No Longer Displayed . G-9
G-15. Example 15—Displayed Behavior When Moving DBCS Data G-9
G-16. Example 16—Results of Moving DBCS Characters to N-NAME G-9

I-1. XPEDITER/TSO Process Execute JCL Screen. I-1
I-2. Second Process Execute JCL Screen . I-2
I-3. XPEDITER/TSO Select Job Step # 3. I-2
I-4. Stored Procedure Waiting for Connection Message. I-3
I-5. XPEDITER/TSO Status Screen # 1 (Stored Procedure) . I-3
I-6. XPEDITER/TSO Status Screen # 2 (Client Application and Stored Procedure) I-3
I-7. XPEDITER/TSO Status Screen # 3 (Client Application and Stored Procedure) I-4
I-8. XPEDITER/TSO Source Screen # 1 (Client Application). I-4
I-9. XPEDITER/TSO Status Screen # 4 (Client Application and Stored Procedure) I-5

I-10. XPEDITER/TSO Source Screen # 2 (Stored Procedure) . I-5
I-11. XPEDITER/TSO Source Screen # 3 (Client Application). I-6

xiv XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide

xv
Tables

2-1. Default Program Function (PF) Keys .2-3
4-1. Guidelines for Choosing an Environment. .4-18
C-1. Setup Options Available for XPEDITER/TSO Environments C-3
C-2. Setup Options Available for XPEDITER/IMS Environments C-4
G-1. DBCS Fields on the XPEDITER Source Display Screen. G-2

xvi XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide

xvii
Introduction Intro

This document introduces you to XPEDITER/TSO and XPEDITER/IMS, using a series of
examples that demonstrate simple and advanced debugging techniques that can be
applied to your application development and maintenance needs. It describes how to use
XPEDITER/TSO facilities in the COBOL context with minor references to mixed language
debugging support. Additional information is provided in other manuals; refer to
“Related Publications” on page xviii.

Manual Organization
This manual contains the following chapters:

Chapter 1, “XPEDITER/TSO Overview”: Summarizes the functions and features of
XPEDITER/TSO and XPEDITER/IMS.

Chapter 2, “User Interface to XPEDITER/TSO”: Describes the Source screen format,
default PF keys, command processing, and attention key processing.

Chapter 3, “Quick Sample Debugging Session”: Provides a short tutorial highlighting
the basic debugging features of XPEDITER/TSO.

Chapter 4, “Getting Started”: Describes the online Compile Facility, which is used to
prepare your programs for debugging with XPEDITER/TSO. Also describes how to start an
XPEDITER/TSO debugging session in interactive mode, in batch mode using the Batch
Connect facility, and how to manually change your execution JCL to start a batch
session.

Chapter 5, “Debugging Interactively”: Describes how to use XPEDITER/TSO commands
to control execution, inspect data, analyze logic, modify logic, debug sourceless
programs, and other debugging functions.

Chapter 6, “Handling Run-Time Errors”: Describes how to analyze and apply fixes for
abends.

Chapter 7, “Debugging With XPEDITER/IMS”: Describes how to start an
XPEDITER/IMS debugging session.

Chapter 8, “Debugging With DB2 Stored Procedures”: Describes how to start a
debugging session with DB2 Stored Procedures.

Chapter 9, “Debugging Programs With Special Conditions”: Provides general
information about debugging certain types of programs.

Appendix A, “Using the File Allocation Utility”: Describes how to access and use the
File Allocation Utility.

Appendix B, “XPEDITER/TSO Environment Test Screens”: Provides full descriptions of
all environment test screens.

Appendix C, “Specifying Setup Options”: Describes how to specify and override the
installed setup options such as the load library, DDIO file, DB2 system name, and so on.

Appendix D, “Specifying Session Defaults”: Describes how to specify terminal
characteristics, PF key definitions, screen colors, user profiles, and so on.

xviii XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Appendix E, “XPEDITER/TSO Utilities”: Describes the XPEDITER/TSO utilities that let
you create and maintain source listings, display available memory, display file
allocations, and convert and merge user profiles.

Appendix F, “Binding the Application Plan or Package”: Describes how to bind DB2
programs.

Appendix G, “DBCS Support”: Describes the complexity of double-byte character set
support.

Appendix H, “COBOL-Structure Keywords”: Describes the COBOL-structure keyword
and the verbs that the keyword identifies.

Appendix I, “Debugging a Client Application and DB2 Stored Procedure”: Describes
how to debug a DB2 stored procedure along with the client application that calls it.

Intended Audience
This manual is intended for use by COBOL programmers. A working knowledge of
COBOL and your local operating system(s) is assumed.

Accessing Other Products
XPEDITER/TSO and XPEDITER/IMS are fully integrated with Compuware’s File-AID for
DB2 (Release 3.5 or above), and Abend-AID (Release 7.0.2 or above for COBOL and
Assembler, and Release 8.0.4 or above for PL/I and C Language). From the XPEDITER/TSO
Primary Menu, you can access a CICS region where other Compuware tools, such as
XPEDITER/CICS and Abend-AID for CICS, can be used.

Notation Rules
This manual uses the following notation rules:

• Uppercase characters are used in text for commands, keywords, and function keys.

• Screen titles appear in text with initial capitals.

• Screen fields, prompts, and messages are capitalized as displayed.

• Information that the user enters is shown in bold type.

• Occasional dataset and library member names are shown in bold type for emphasis.

• Commands are not considered case sensitive; they can be typed in all lowercase in
the command area.

Related Publications
The following Compuware documents are also available for use with the XPEDITER/TSO
and XPEDITER/IMS product:

• XPEDITER/TSO and XPEDITER/IMS Installation Guide

This document contains the steps necessary to install XPEDITER/TSO and
XPEDITER/IMS (full-screen IMS/DC) for testing COBOL, Assembler, PL/I, and C
language programs.

• XPEDITER/TSO and XPEDITER/IMS Reference Manual

Introduction xix
This document lists all the XPEDITER commands available for use when debugging
COBOL, Assembler, PL/I, and C language programs. It is written for the application
programmer engaged in program development and maintenance.

• XPEDITER/TSO and XPEDITER/IMS Assembler User’s Guide

This document contains a series of examples that demonstrate simple and advanced
debugging techniques that can be applied to your application and development
needs. It describes how to use XPEDITER/TSO and XPEDITER/IMS facilities in the
Assembler context.

• XPEDITER/TSO and XPEDITER/IMS C Language User’s Guide

This document contains a series of examples that demonstrate simple and advanced
debugging techniques that can be applied to your application and development
needs. It describes how to use XPEDITER/TSO and XPEDITER/IMS facilities in the C
language context.

• XPEDITER/TSO and XPEDITER/IMS Messages and Codes

This document provides messages and codes for XPEDITER/TSO and XPEDITER/IMS.

• XPEDITER/TSO and XPEDITER/IMS PL/I User’s Guide

This document contains a series of examples that demonstrate simple and advanced
debugging techniques that can be applied to your application and development
needs. It describes how to use XPEDITER/TSO and XPEDITER/IMS facilities in the
PL/I context.

• XPEDITER/TSO and XPEDITER/IMS Quick Reference

This document provides quick access to XPEDITER/TSO COBOL, Assembler, PL/I, and
C language commands and command descriptions.

• File-AID for DB2 Reference Manual

This document provides information about using File-AID for DB2 facilities.

• XPEDITER/Xchange Installation and Reference Manual

This document provides the information needed to move your time-sensitive
applications into the year 2000 and beyond.

• Enterprise Common Components Installation and Customization Guide

An introduction, overview, and installation guide for Compuware Shared Services
components, Compuware’s common files and utilities (DDIO and DDSUTIL), and the
Compuware language processor.

• Compuware Shared Services User/Reference Guide, MVS Version

This document provides information to install, customize, and maintain Compuware
Shared Services (CSS). It is intended for CSS installers and application programmers.

• XPEDITER/Code Coverage Mainframe Installation Guide

This document provides information about installing XPEDITER/Code Coverage.

• XPEDITER/Code Coverage Mainframe User/Reference Guide

This document provides information regarding the use of XPEDITER/Code Coverage.
It provides an explanation of the requirement that XPEDITER/Code Coverage work
in conjunction with at least one additional mainframe XPEDITER test and debugging
tool.

More information on compiler options is contained in the following documents

• VS COBOL II Application Programming Guide
• IBM OS/VS COBOL Compiler and Library Programmer’s Guide
• IBM OS Full American National Standard COBOL Compiler and Library, Version 3 Programmer’s

Guide

xx XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Documentation Availability

FrontLine Support Website

Access online technical support for Compuware products through our FrontLine support
website. View or download documentation, frequently asked questions, and product
fixes, or directly e-mail Compuware with questions or comments. To access FrontLine,
you must first register and obtain a password at http://frontline.compuware.com.

Online Documentation

Documentation for this product is provided on CD-ROM in the following electronic
formats:

• View PDF files with the free Adobe Acrobat Reader, available at
http://www.adobe.com.

• View HTML files with any standard Web browser.

• View BookManager softcopy files with any version of IBM BookManager READ or the
IBM Softcopy Reader. To learn more about BookManager or to download the free
Softcopy Reader, go to http://www.ibm.com.

World Wide Web

Compuware’s site on the World Wide Web provides information about Compuware and
its products. The address is http://www.compuware.com.

Getting Help
At Compuware, we strive to make our products and documentation the best in the
industry. Feedback from our customers helps us to maintain our quality standards.

Questions about any XPEDITER product or comments on this document should be
directed to:

XPEDITER/TSO and XPEDITER/IMS Technical Support
Compuware Corporation

One Campus Martius
Detroit, MI 48226-5099

1-800-538-7822

Outside the USA and Canada, please contact
your local Compuware office or agent.

If problems occur, consult your manual or the XPEDITER/TSO and XPEDITER/IMS
technical support representative at your site. If problems persist, please obtain the
following information before calling Compuware. This information helps us to
efficiently determine the cause of the problem.

For problems occurring during compile time:

• Release level of COBOL

• List of other vendor products used

• Abending module name

• Any messages in CWPERRM ddname

For problems encountered before bringing up your program:

Introduction xxi
• Sequence of events leading up to the problem

• Release and level of the XPEDITER product

• Any ISPF error messages, operating system messages, and information provided by
the TSO Command Profile WTPMSG

For run-time abends:

• Release and level of the XPEDITER product

• Any ISPF error messages, operating system messages, and information provided in
the TSO Profile WTPMSG

• Information provided in the product log dataset at the time of the abend

Note: When in-depth diagnosis is required, the following information will be requested:

1. Full SYSUDUMP (not Abend-AID dump) or SYSMDUMP

2. Source listing or tape of problem programs, including all copy books and members
used

3. Listing of the XPEDITER log at the time of the abend

4. Listing of the original compile

5. Listing of the BTSOUT dataset, if testing under BTS.

xxii XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide

1-1

Chapter 1.

1XPEDITER/TSO Overview Chap 1

XPEDITER/TSO and XPEDITER/IMS are debugging and testing tools for COBOL, PL/I,
Assembler, and C language programs. XPEDITER automates the tasks of identifying
problems, applying solutions, analyzing the impact of changes, and testing the fixes.

Compiling and assembling your programs, test session setup procedures, and XPEDITER
commands are compatible across languages, with some differences.

When you have COBOL, Assembler, PL/I, and/or C language versions installed at your
site, XPEDITER/TSO allows you to debug mixed applications in the same test session.

Operating Environment Support
XPEDITER/TSO is invoked as an ISPF dialog under TSO. XPEDITER/IMS DC executes in an
IMS-dependent region within your TSO address space. The following environments are
supported:

• OS/390 Version 2
• z/OS Releases 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6
• DFSMS
• OS/VS COBOL Release 2.4
• VS COBOL II Version 1, Releases 4.0 and above
• COBOL for MVS & VM Release 1.2 (in compatibility mode)
• COBOL for OS/390 Release 2.1 and 2.2 (both in compatibility mode)
• Enterprise COBOL for z/OS and OS/390 Version 3.1, 3.2, and 3.3 (all in compatibility

mode)
• CA-OPTIMIZER Releases 5.1 and 6.0
• Assembler H Version 2, High Level Assembler
• PL/I Versions 2.3 and above
• AD/Cycle for PL/I MVS and VM 1.1 (PL/I 370)
• VisualAge PL/I for OS/390 Releases 2.2.1 and 2.2.24 (both in compatibility mode)
• Enterprise PL/I for z/OS Version 3.1, 3.2, 3.3, and 3.4 (all in compatibility mode)
• Major sorting packages - DFSORT and SYNCSORT
• ISPF/PDF Versions 3.5 through 5.6
• DB2 Versions 5.1, 6.1, 7.1, and 8.1
• IMS/ESA Versions 6.1, 7.1, 8.1, and 9.1
• BTS
• IDMS/DB, ADABAS, TOTAL, TIS, SUPRA, DATACOM/DB, System 2000
• Hogan
• AD/Cycle for COBOL/370 Release 1.1
• LE/370 Versions 1.2, 1.3, and 1.4
• Language Environment for MVS & VM, Versions 1.5, 1.6, 1.7, 1.8, 1.9, 2.7, 2.8, 2.9,

2.10, as well as Language Environment for z/OS Version 1.2, 1.3, 1.4, 1.5, and 1.6
• C for MVS/ESA Version 3.2
• OS/390 C Version 1.2, 1.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, and 2.10
• z/OS C Versions 1.1 through 1.6.

Contact Compuware Technical Support for information on releases not mentioned
above.

1-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Notes:

1. For COBOL, compatibility mode means that XPEDITER/TSO supports COBOL II and
COBOL/370 programs that have been recompiled with COBOL for MVS & VM
Version 1.2 or Enterprise COBOL for z/OS and OS/390 Version 3.1/3.2/3.3.
XPEDITER/TSO does not support the new COBOL for MVS & VM Version 1.2 features,
nor the Enterprise COBOL for z/OS and OS/390 Version 3.1/3.2/3.3 features, with the
exception of Local-Storage, Recursive, and Returning (requires Compuware Shared
Services (CSS) Release 7.4 or greater). For PL/I, compatibility mode means that
XPEDITER/TSO supports PL/I Versions 2.3 (and above) and AD/CYCLE for PL/I MVS
and VM 1.1 (PL/I 370) programs that have been recompiled with VisualAge PL/I for
OS/390 Releases 2.2.1/2.2.24 and Enterprise PL/I for z/OS Version 3.1/3.2/3.3/3.4.
XPEDITER/TSO does not support the new VisualAge PL/I for OS/390 Releases
2.2.1/2.2.24 and Enterprise PL/I for z/OS Version 3.1/3.2/3.3/3.4 features.

2. In a prior release, support was dropped for Assembler F; VS COBOL II, Releases 3.0,
3.1, and 3.2; PL/I Version 1.5; ISPF/PDF Versions 2, 3.1, 3.2, and 3.3; DB2 Versions 1
and 2; IMS/ESA Version 3; MVS/XA Version 2; IMS/VS Versions 1 and 2; CA-
OPTIMIZER Release 5.0; TSO dBUG-AID; and TCF.

3. All release support is dependent on the vendor certifying that the product is Y2K
compliant.

4. Support for MVS/ESA (all versions) and OS/390 Version 1 has been dropped.

5. Support for DB2 Version 5.1 Stored Procedures has been dropped.

6. Support for DB2 Versions 3.1 and 4.1, and IMS/ESA Version 5.1 has been dropped in
this release.

Modes of Operation
There are two modes in which you can invoke an XPEDITER/TSO debugging session:

• Interactive mode
• Batch mode.

Note: XPEDITER/IMS can only be executed in interactive mode.

Interactive Mode

In this mode, you can interactively allocate the necessary files and databases required for
the program to execute, set up the test session environment options, and optionally
override any XPEDITER defaults. As you watch your program execute, you can use
interactive source-level debugging functions such as stepping through the source, setting
breakpoints, displaying and modifying variables, etc.

Interactive mode is preferable when you have a specific problem for which you want to
dynamically try out a solution.

Batch Mode

There are two ways to invoke an XPEDITER/TSO debugging session in batch mode:

• Batch Connect facility.

Through the Batch Connect facility, your execution JCL is automatically submitted
to MVS and you can connect directly to the job as it executes in its native
environment—the MVS batch initiator.

The Batch Connect facility automates the setup and file allocations, displays the job
steps in the specified JCL, and lets you select the steps to which you want to
interactively connect and those that you want to run in unattended batch. The Batch

XPEDITER/TSO Overview 1-3
Connect intelligent scanner automatically expands the JCL and inserts the necessary
statements to run each step according to how you want it to be processed.

With the Batch Connect facility, you get the benefit of submitting the job in batch,
which uses less processor resources, and you can test programs with multiple steps,
programs that require tape files and many I/O operations in background, and long
running programs.

• Manually changing your execution JCL.

Although the Batch Connect facility is the preferred method for running a job in
batch, you can manually access your execution JCL and make changes to convert the
JCL to run with XPEDITER/TSO in unattended or interactive (Batch Connect) modes.

Interactive Debugging and Testing Features
When your program is executed under interactive XPEDITER/TSO, the source is displayed
in a fully scrollable window where you can view the inner workings of the program as
each statement is executed. For example, you can see the execution arrow moving from a
PERFORM statement to the actual out-of-line perform paragraph, or you can see a data
identifier changing its value as the MOVE, INITIALIZE, STRING, or COMPUTE statements
are executed.

Figure 1-1 shows the Source display screen under XPEDITER/TSO. All debugging and
testing functions are accessible from this screen without having to exit to a separate
screen.

XPEDITER/TSO does not require any source code or load module changes; however, you
need to create a "symbolic" information dataset called the source listing file to debug at
the source level. The source listing is created by compiling your programs with the
Compuware Shared Services COBOL language processor. XPEDITER/TSO displays and
processes the source listing records during the test session.

Figure 1-1. COBOL Program in the Source Display Screen

The capabilities of XPEDITER/TSO are extensive enough to assist the experienced
programmers’ needs, and yet, the implementation is simple enough and efficient enough
to curtail the learning curve that novice programmers generally experience. The
following list summarizes XPEDITER/TSO’s major features:

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 BEFORE BREAKPOINT ENCOUNTERED
 ** END **

------ --- Before TRIMAIN <>

=====> B PROCEDURE DIVISION.
000035 MAIN-PARA.
000036 PERFORM INIT-PARA.
000037 PERFORM ANALYZE-NEXT-REC
000038 UNTIL OUT-OF-RECS = 'Y'.
000039 PERFORM ENDING-PARA.
000040 A GOBACK.
000041 INIT-PARA.
000042 MOVE ZERO TO N-CNTR (1) N-CNTR (2) N-CNTR (3) N-CNTR (4).
000043 OPEN INPUT INFILE.
000044 MOVE 'N' TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
000046 READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE 'Y' TO OUT-OF-RECS.

1-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
• Intercept program abends.

XPEDITER/TSO detects application abends and displays a diagnostic message. You
can request an Abend-AID formatted report if you have Abend-AID Release 7.0.2 or
above. You can also view the log for more information. If the problem is a
recoverable error, you can fix the error dynamically and resume execution.

• Start or stop execution at any point.

You can set conditional or unconditional breakpoints, so you can stop program
execution at any point and figure out what the program has processed so far, and
what the consequences of any changes could be. You can also step through code, line
by line, to understand how each statement affects the program.

• Display and modify variable, register, and storage contents.

You can view the values of any variable as your program executes, and if you want,
alter the values as if the program had actually moved in the value you requested.
Tables can be displayed by dimension, and you can browse through each entry by
incrementing and decrementing the subscript. You can also display general-purpose
registers and memory to analyze the problem at the lower level.

• Trace logic flow.

Statements can be highlighted to identify the execution path as XPEDITER/TSO
traces through the program. You can control the speed of the execution so that you
can follow the logic interactively at a speed that best suits you.

• Logically review execution in the reverse direction.

XPEDITER/TSO can display the execution history in the reverse direction so you can
review the execution path with associated data values. The execution arrow moves
backwards, and the data display shows the original values.

• Monitor execution coverage.

You can set counters on statements to test execution coverage or to monitor loops
and procedure calls for optimization.

• Alter logic.

You can dynamically change the control flow by modifying the data values or by
forcing a branch to test an alternate path.

• Bypass unwanted code.

You can skip a range of statements or programs.

• Temporarily insert XPEDITER/TSO debugging statements.

You can insert XPEDITER/TSO commands to control debugging conditions that occur
at a certain location and to force data and logic changes. This feature lets you
prototype some COBOL-like constructs. If you have XPEDITER for DB2 Extension
and File-AID for DB2, you can also insert SQL statements.

• Analyze program structure and data flow.

XPEDITER/TSO identifies certain program structures (conditionals, branches, I/Os,
statements that alter data values, etc.) by highlighting the applicable statements
when requested. Also, statements that make references (MODIFY or USE) to a
particular data item can be identified.

• Display file status and DCBs.

VSAM file status and last I/O operation can be retrieved through XPEDITER/TSO.
DCB information can also be checked in the case of I/O error. When a DD statement
is not preallocated, XPEDITER/TSO intercepts execution and gives you an
opportunity to allocate the missing files before resuming execution.

• Test and debug programs that do not have the source available.

• Display called module stacking.

XPEDITER/TSO Overview 1-5
The called module configuration such as the load address, entry point, size, attribute,
AMODE, RMODE, and language can be retrieved.

• Maintain multiple profiles.

XPEDITER/TSO’s Profile Handling facility provides a flexible and easy-to-use method
for using and maintaining multiple profiles. Multiple profiles are used because some
of the data you see during an XPEDITER/TSO debugging session depends on the
current profile. This includes installation defaults established by your system
programming staff, and most importantly, environment parameters and setup
options for the debugging session.

XPEDITER/TSO Input and Output
The primary input to XPEDITER/TSO is the following:

1. DDIO libraries containing the source listing members.

2. Load libraries containing the programs to be tested and debugged.

Note: The source listing dataset and your load libraries are the output of the
compile and link process discussed in “Preparing Your Programs” on page
4-3.

3. JCL, file list, or CLIST that can be processed to allocate the input files and databases
needed by your program.

4. Optionally, a test script library.

The primary output of the debugging session is the following:

1. Data files generated by the execution of the program.

2. Session log.

XPEDITER/TSO automatically records (to the log file) the commands entered and the
responses made to each command during a debugging session. The log dataset can
have an LRECL of 133 or 80. The log does not contain the interactive manipulation
commands (e.g., LEFT, RIGHT, UP, DOWN) nor does it contain the actual program
displays.

In unattended batch mode, the log file shows the output of a batch test and is available
after the completion of the debugging session. In interactive mode, it is available at all
times.

The log file can be kept as part of the documentation, to be referenced whenever
maintenance is performed on the program. It can be viewed for further information
in determining the cause and possible resolution of an abend. Chapter 6, “Handling
Run-Time Errors” contains a discussion of the log display.

3. Test script containing the commands that were entered during the test session.

After the session is terminated, you can save, copy, or move the generated script to a
member of a script library (INCLUDE dataset), which can then be used as input to
another debugging session.

Types of Programs Supported
XPEDITER/TSO supports the following types of programs:

• Standard batch applications

• ISPF dialog applications

1-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
• Batch applications that issue database calls (IDMS, IMS/DB, DB2, IDMS/DB, ADABAS,
and SUPRA)

• IMS/DC programs using BTS

• Hogan applications (BATCHPEM, DLIPEM, BMPPEM, and IMSPEM)

XPEDITER/IMS supports the following types of programs:

• IMS/DC programs executing in the IMS message, BMP, or Fast Path region

• Hogan applications executing in the IMS message region

LOGON Region Size Requirements
Debugging with XPEDITER/TSO may require an increase to the default TSO LOGON
region size. This provides protection against abends caused by insufficient space.

XPEDITER/TSO requires about 640K bytes minimum, in addition to the application
programs to be tested and debugged. Additional storage could be required, depending on
the number and size of the programs that are referenced symbolically during the
debugging session.

It has been our experience that 2048K to 4096K (2M to 4M) is sufficient size for
debugging most applications.

Restrictions and Warnings
The following list explains some of the technical restrictions and questions related to the
functioning of XPEDITER/TSO:

Compiler Options:

XPEDITER requires specific compile options which may vary depending on the language
type and actual version being used. A user should always refer to the appropriate CSS
User/Reference Guide for information related to any required compiler options. Examples
are as follows: (1) Options NOTEST and NONUMBER are required for COBOL; (2) Option
NOTEST is required for PL/I; and (3) Options ESD and LIST are required for Assembler.
The Guide is required to assist users in manually converting Compile and Link JCL to
execute the CSS Language Processor. The Guide also gives most users information on how
to set up the Language Processor parameters to write a matching source listing to a DDIO
file.

Postprocessed Listing Support:

When the postprocessed listing contains a COPY SUPPRESS statement, the
XPEDITER/TSO commands FIND, PEEK, and KEEP will not work correctly.

The postprocessed source listing must have been compiled with the compile options
required by XPEDITER/TSO; otherwise, unpredictable results can occur.

Attention (User Interrupt—PA1 Key) Processing:

The use of the PA1 key (user interrupt) from within XPEDITER/TSO can sometimes cause
a recursive abend.

Split Screen:

When running XPEDITER with the LE/370 run-time libraries with TRAP ON, do not split
the screen and run another application that uses the LE/370 libraries. An abend may
occur.

XPEDITER/TSO Overview 1-7
Multitasking Support:

Compuware does not support multitasking applications within XPEDITER/TSO, except in
the dialog environment, where single task testing is supported within a multitasking
environment.

Self-Modifying Programs:

XPEDITER’s ability to debug an application program is based on its inherent knowledge
of the object module. Self-modifying code that changes opcodes, displacements, or
operands is not supported for testing under XPEDITER.

Optimized Code:

XPEDITER/TSO displays the source for optimized code as it was originally written, but
executes the code generated by the optimizer. As a result, depending on the optimizing
algorithm applied to the code, the following can occur:

• Highlighting during execution of the trace of the optimized code can be misleading.

• Values displayed by the KEEP and PEEK commands may not be updated according to
the program logic.

• Abends can occur when you use XPEDITER/TSO commands such as GOTO and SKIP
that alter the program execution paths. These abends occur when the altered
execution paths are in conflict with path dependencies generated by the optimizer.

• If you used Copy Suppress in the Procedure Division, you might not be able to set a
breakpoint on the first statement following the copied code.

IMS Testing:

• When an application program is scheduled into an IMS MPP or BTS simulated MPP
region, none of the breakpoints are retained from a previous test. Once the
application program is scheduled, the breakpoints are retained until the application
program returns to the IMS program controller.

• If you are not using the IMS UserID support, transactions specified on the test MPP
screen are queued to run in the XPEDITER/TSO region regardless of where the
transactions were initiated. XPEDITER/TSO assigns a unique class to each of the
specified transaction codes and forces them to run only in your XPEDITER/TSO
region. The transaction codes are not reassigned to their original class until you have
completely finished testing in the MPP region.

• If a DLI program uses the XRST facility, the first DLI call must be the XRST call.
Otherwise, you can cause an abend 04E with reason code 00D44054.

• Within a BTS/DLI setup, recovery of DB2 tables and IMS databases are
uncoordinated. An SQL COMMIT/ROLLBACK call commits or rolls back changes
made to DB2 tables only, not your IMS databases.

• XPEDITER/TSO forces on the PARDLI parameter in the BMP environment.

• If you are experiencing system abends while using the BTS TRACE to monitor DB2
activity, check with IBM for fixes available for the BTS program product. Problems
have occurred in MVS/XA IMS 1.3 and BTS 1.3, as well as MVS/ESA IMS 3.1 and BTS
3.1.

Naming Convention:

Program names should not begin with IBM reserved prefixes such as IHO, ILBO, IGZ, and
so on.

COBOL Ready Trace:

Unpredictable results can occur in XPEDITER/TSO when the COBOL READY TRACE
command is used.

1-8 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Memory Allocations:

User programs and other vendor packages that perform FREEMAINs on subpool=0 or
subpool=3 are not supported.

Link Options:

XPEDITER/TSO does not support the NE or OVLY linkage editor parameters.

Abend Intercepts:

XPEDITER/TSO does not support programs that issue (E)STAE or (E)SPIE macros.

2-1

Chapter 2.

2User Interface to XPEDITER/TSO Chap 2

This chapter describes how to interact with XPEDITER/TSO in general. The screen
formats, PF key assignments, command processing, and attention key processing are
discussed.

XPEDITER Screens
XPEDITER uses screens that are like ISPF/PDF, making the XPEDITER menus and utility
screens self-explanatory. The Source, Log, Show, and Memory screens have a similar
format. Figure 2-1 displays a COBOL program in the XPEDITER Source screen.

Figure 2-1. XPEDITER/TSO COBOL Program in the Source Screen

The screen areas are described as:

Title

(line 1)—Identifies the screen name: Source, Log, Show, Memory, and so forth.

Command area

(line 2)—Primary command line, which can be increased to three lines using the SET
CMDSIZE command.

Scroll amount

(line 2)—Indicates the current scroll amount. You can type over the current value
with one of the following values:

1 to 9999 Scrolls by the number of lines or columns.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 08/23/1995 COMP TIME:14.41.59
 ** END **

------ --- Before TRIMAIN <>
=====> B PROCEDURE DIVISION.
000035 MAIN-PARA.
000036 PERFORM INIT-PARA.
000037 PERFORM ANALYZE-NEXT-REC
000038 UNTIL OUT-OF-RECS = 'Y'.
000039 PERFORM ENDING-PARA.
000040 A GOBACK.
000041 INIT-PARA.
000042 MOVE ZERO TO N-CNTR (1) N-CNTR (2) N-CNTR (3) N-CNTR (4).
000043 OPEN INPUT INFILE.
000044 MOVE 'N' TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
000046 READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE 'Y' TO OUT-OF-RECS.

2-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Program

(line 3)—Identifies the source program currently displayed. This is an unprotected
field and can be typed over with another program name.

Module

(line 3)—Displays the load module name.

Compile date

(line 3)—Displays the compile date.

Compile time

(line 3)—Displays the compile time.

Message area

(line 3)—Displays short or informational messages. When a message is issued, it
overlays the program information in line 3. Press Enter to flush the message and
display the program information. Additional information can be accessed by pressing
PF1 (HELP).

Keep window

(lines 4 - 8)—Automatically displays data referenced in the current statement; i.e.,
the statement where the execution arrow is located when the breakpoint takes effect.
Explicitly kept data is also displayed. Explicitly kept items are denoted by a K in
column 9 of the window.

The data in the window can be scrolled by moving the cursor to the Keep window
and using the PF7 (UP) and PF8 (DOWN) keys to scroll vertically and the PF22
(DRIGHT) and PF23 (DLEFT) keys to scroll horizontally. You can also control the size
of the window and, for automatic keeps, the placement of the automatically kept
items. Refer to the SET command in “Displaying Test Session Settings” on page D-8
for additional information.

The SET AUTOKEEP ON/OFF command toggles the effect of the Automatic Keep
function.

Execution status

(line 9)—Identifies the current execution point in your program. The <> shown at
the end of this line indicates that the source can be scrolled to the left and/or right.

Source area

As shown in Figure 2-1 on page 2-1, the source area begins on line 10 and displays 68
to 70 bytes of the source code on the screen at a time. The source can be scrolled
vertically using the PF7 (UP) and PF8 (DOWN) keys and horizontally using the PF10
(RIGHT) and PF11 (LEFT) keys. When an Automatic Keep window is visible, the data
in the window can also be scrolled vertically using the PF7 and PF8 keys and
horizontally using the PF22 and PF23 keys.

The After, Before, Peek, and Skip indicators are displayed on the left side of the
source in column 9. A 7-digit counter set by the COUNT command is displayed on
the right side beginning at column 74.

CSR or C Scrolls based on the current position of the cursor.

DATA or D Scrolls by one line or column less than PAGE.

HALF or H Scrolls by a half page.

PAGE or P Scrolls by one page.

User Interface to XPEDITER/TSO 2-3
PF Keys
The default settings for the 24 XPEDITER PF keys are listed below. These values are valid
during the XPEDITER/TSO session. ISPF PF keys are not affected. The ISPF KEYS
command or the SET PFn command can be used to override the defaults.

Command Processing
In interactive mode, the results of command execution are immediately visible on the
source display.

XPEDITER/TSO commands can be entered in three ways:

1. Type the command in the primary command area and press Enter. Command
stacking, delimited by a semicolon (;), is allowed.

The primary command area can be extended up to three lines by using the SET
CMDSIZE command. The previous primary command can be recalled by entering a
question mark (?).

2. Press the PF key that was assigned to the desired command. Refer to Table 2-1 for a
list of the PF key assignments.

3. Type over the 6-digit compiler-generated statement number with a valid line
command and press Enter.

Table 2-1. Default Program Function (PF) Keys

PF Key Default Setting Description of Function

PF1/PF13 HELP Elaborates an XPEDITER/TSO message and invokes the context-sensitive
tutorial facility.

PF2 PEEK CSR Displays the contents of the data name defined by the current cursor
position. The cursor must be in the Source window under a valid data
name.

PF14 FIND CSR Finds the character string located under the cursor position.

PF3/PF15 END Returns you to the previous menu if you are in the Log, Help, Browse, or
Show functions.

PF4/PF16 EXIT Ends the current XPEDITER/TSO session.

PF5 FIND Repeats the action of the previous FIND command.

PF17 FIND IND Scrolls the source display to successive levels of indirect references related
to a previously entered FIND INDIRECT command.

PF6/PF18 LOCATE * Scrolls the source display to the current location where execution was
suspended.

PF7/PF19 UP Scrolls the source or data in the Keep window up, or toward the top of the
file.

PF8/PF20 DOWN Scrolls the source or data in the Keep window down, or toward the bottom
of the file.

PF9/PF21 GO 1 Executes the next logical instruction in your program, then pauses.

PF10 LEFT Scrolls the source display to the left.

PF11 RIGHT Scrolls the source display to the right.

PF12/PF24 GO Starts or resumes execution of your program.

PF22 DLEFT Scrolls data in an Automatic Keep, Keep, or Peek window to the left.

PF23 DRIGHT Scrolls data in an Automatic Keep, Keep, or Peek window to the right.

2-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
XPEDITER/TSO records the line command in the log in the same manner as the
primary command.

Lowercase Conversion

By default, commands entered in lowercase are converted to uppercase. To override the
default, use the SET CAPS OFF command. Also, to display lowercase data, use the SET
LOWCASE ASIS command.

Attention Key Processing
When you press the attention key while XPEDITER or your application is executing, the
message ENTER ATTENTION OPTION OR HELP FOR LIST OF OPTIONS is displayed. If
you enter HELP, a screen containing information similar to Figure 2-2 is displayed. Enter
the option you want to perform.

Figure 2-2. Attention Key Processing Options

Note: The options listed on the Attention Key Processing Options screen will be
different for MPP programs.

If pressing the Attention key interrupts an IMS Fast Path test and you then enter the EXIT
command, XPEDITER/IMS will detach your IMS region and an S33E system abend will be
reported as you return to the starting test panel. Message XPD1202 records the abend in
the XPEDITER log.

CAUTION:
In XPEDITER/IMS, do not press the attention key twice. When you do this, the
session is terminated with the TSO default, and you are returned either to ISPF or
native TSO. In addition, XPEDITER/IMS is not terminated normally; i.e., your
datasets cannot be closed safely.

When you press the attention key while XPEDITER is waiting for input (e.g., stopped at a
breakpoint), the message ATTENTION IGNORED - WAITING FOR TERMINAL INPUT is
displayed. If you press the attention key again, the message ENTER ATTENTION TO
TERMINATE OR ENTER TO CONTINUE is displayed. Pressing attention again will take
you to the READY prompt.

ENTER:
 PAUSE TO DYNAMICALLY INVOKE THE PAUSE COMMAND
 EXIT TO TERMINATE THE TEST SESSION
 LOG TO DISPLAY THE LOG PRIOR TO TERMINATION
 PSW TO DISPLAY THE CURRENT PSW ADDRESS
 GPREGS TO DISPLAY THE CURRENT GENERAL PURPOSE REGISTERS
 STORAGE <address> TO DISPLAY STORAGE AT THE SPECIFIED ADDRESS
 WHERE TO DISPLAY THE CURRENT MODULE AND OFFSET
 WHERE <address> TO DISPLAY THE MODULE AND OFFSET OF <address>
 WHERE <module> TO DISPLAY THE ADDRESS OF THE SPECIFIED MODULE
 GO TO RESUME TEST EXECUTION (or PRESS ENTER)

3-1

Chapter 3.

3Quick Sample Debugging Session Chap 3

This chapter demonstrates some of the basic interactive debugging features of
XPEDITER/TSO, using the sample program TRIMAIN, which calls TRITST and TRIRPT.
This quick overview shows you how to do the following:

• Prepare the programs
• Start an interactive debugging session
• Set breakpoints
• Display file information
• Display data values
• Debug subroutines
• Analyze data flow
• Trace logic flow
• Monitor and review the execution path.

Preparing the Programs
The source for TRIMAIN, TRITST, TRIRPT, and TRIDATA (the input dataset containing the
data) is provided on the XPEDITER/TSO distribution tape. The common load module,
DDIO dataset, test data, and file list libraries should have already been created and/or
verified by your site installer. Contact your installer for the names of these libraries and
datasets.

If these datasets and libraries were not created, you must compile and link-edit the
programs using the Compuware Shared Services (CSS) COBOL language processor. You
must also specify the appropriate load module and DDIO dataset on the Setup screens.

Option 1 on the XPEDITER/TSO Primary Menu can be used to compile and link-edit the
programs. Refer to “Preparing Your Programs” on page 4-3 if you need assistance.

When you are ready to start the session, do the steps listed below in “Starting the
Debugging Session”.

Starting the Debugging Session
1. Type TRIMAIN in the Profile field on the XPEDITER/TSO Primary Menu. XPEDITER

creates a profile for the session, displays the Profile screen, and prompts you to enter
a description for the new profile. Type XPEDITER Sample Program TRIMAIN in the
description area and press the End key. The Primary Menu is redisplayed.

2. Type 2 (TSO) in the command line of the Primary Menu. The Environments Menu is
displayed if this is your first time invoking an XPEDITER/TSO debugging session.
Otherwise, the last environment test screen you used is displayed. To access the
Environments Menu, type SETUP in the command line of the displayed environment
test screen. Then type option 0 on the Test Setup Menu to display the Environments
Menu.

3. Type 1 (STANDARD) on the Environments Menu.

4. Type SETUP on the Standard test screen.

5. Type 1 (LOADLIBS) on the Setup Menu.

3-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
6. On the Load Module Libraries screen, enter the name of the application load library
that contains the TRIMAIN load module (optional).

7. Press Enter.

8. Type 2 (DDIO) on the Setup Menu.

9. On the DDIO Files screen, enter the DDIO dataset name that contains the source
listing member of TRIMAIN. In addition to the original DDIO dataset name, you may
also specify a Shared Directory dataset name and/or an LP database dataset name.

10. Press Enter.

11. Type END or press PF3 to return to the Standard environment test screen.

12. Specify the name of the program and the name of the file list or the JCL containing
the names of the files required by your program. Complete the screen as shown in
Figure 3-1.

Figure 3-1. Standard Test Screen

13. Press Enter to begin the XPEDITER/TSO debugging session. The message area
contains the lines Allocating XPEDITER/TSO Datasets, then Allocating User
Datasets. On a blank screen, the message Entering XPEDITER/TSO Test
Environment appears.

XPEDITER/TSO processes the file list, allocates the necessary datasets, loads the program
TRIMAIN, and displays the COBOL source listing. You should be able to see the message
Before Breakpoint Encountered with the execution arrow (=====>) pointing to the
PROCEDURE DIVISION statement. This means that TRIMAIN stopped before beginning
execution of the program. Also, a left/right scroll indicator (e.g., -- Before TRIMAIN <>)
appears on the execution status line. A double arrow indicates that scrolling is allowed
both left and right. An example of the source display is shown in Figure 3-2 on page 3-3.

Note: XPEDITER/TSO automatically sets a before breakpoint (B) at the entry to the
program and an after breakpoint (A) at the exit to the program.

 Profile: DEFAULT ------ XPEDITER/TSO - STANDARD (2.1) -----------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 PROFile (Display Profile Selection)
 TEST SELECTION CRITERIA:

 Program ===> TRIMAIN
 Entry Point ===>
 Load Module ===>

 Initial Script ===>
 Post Script ===>

 PARM (Caps = YES) ===>

 File List/JCL Member ===>
 Preview Files? ===> NO
 Code Coverage Test? ===> NO
 Is This a DB2 Test? ===> NO Plan ===> System ===>

 Press ENTER to process or enter END command to terminate

Quick Sample Debugging Session 3-3
Figure 3-2. Source Screen Showing TRIMAIN Program

Setting Breakpoints
You can control program execution by using XPEDITER/TSO commands that set
breakpoints. A breakpoint is a certain location in your program where you want program
execution to stop.

A simple way to enter a breakpoint command is to type it in the line command area.
Move the cursor to the compiler-generated statement number 43 at the OPEN verb, then
type over the statement number with the B (Before) line command and press Enter. As
shown in Figure 3-3, a B appears in column 9 on statement 43, indicating that a before
breakpoint has been set. This breakpoint causes program execution to pause before
executing the OPEN statement.

Figure 3-3. Entering a Before Breakpoint at Statement 43

Press PF12 or type GO to execute TRIMAIN until the breakpoint is reached. The program
stops at statement 43, where the execution arrow is pointing and IN-REC is automatically
kept in the Keep window. The execution status field on the fourth line also shows that
execution is paused Before TRIMAIN:43, as shown in Figure 3-4 on page 3-4.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 BEFORE BREAKPOINT ENCOUNTERED
 ** END **

------ --- Before TRIMAIN <>
=====> B PROCEDURE DIVISION.
000035 MAIN-PARA.
000036 PERFORM INIT-PARA.
000037 PERFORM ANALYZE-NEXT-REC
000038 UNTIL OUT-OF-RECS = 'Y'.
000039 PERFORM ENDING-PARA.
000040 A GOBACK.
000041 INIT-PARA.
000042 MOVE ZERO TO N-CNTR (1) N-CNTR (2) N-CNTR (3) N-CNTR (4).
000043 OPEN INPUT INFILE.
000044 MOVE 'N' TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
000046 READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE 'Y' TO OUT-OF-RECS.

000041 INIT-PARA.
000042 MOVE ZERO TO N-CNTR (1) N-CNTR (2) N-CNTR (3) N-CNTR (4).
000043 B OPEN INPUT INFILE.
000044 MOVE 'N' TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
000046 READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE 'Y' TO OUT-OF-RECS.

3-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 3-4. Program Stopped at Before Breakpoint on Statement 43

Press PF9 (GO 1) to execute the next statement.The program stops at statement 44 after
the input file is opened and before the OUT-OF-RECS switch is set to N. Since the
execution arrow is now paused on statement 44, IN-REC disappears from the Keep
window and OUT-OF-RECS is automatically displayed.

Displaying File Information
Type the SHOW FILE command in the primary command line.The ddnames and DCB
parameters that are specified in the JCL statements are listed, together with the file I/O
status, as shown in Figure 3-5.

Figure 3-5. File Attributes Displayed by the SHOW FILE Command

Press PF3 (END) to return to the Source screen.

Displaying Data Values
Move the cursor to statement 42 where the table (N-CNTR) is initialized with zeros. Type
over the statement number with the P (Peek) line command, and press Enter. The screen
automatically scrolls to the DATA DIVISION statement where the table is defined, inserts

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 BEFORE BREAKPOINT ENCOUNTERED
000012 01 IN-REC > NO ADDR
 ** END **

------ -- Before TRIMAIN:43 <>
000034 B PROCEDURE DIVISION.
000035 MAIN-PARA.
000036 PERFORM INIT-PARA.
000037 PERFORM ANALYZE-NEXT-REC
000038 UNTIL OUT-OF-RECS = 'Y'.
000039 PERFORM ENDING-PARA.
000040 A GOBACK.
000041 INIT-PARA.
000042 MOVE ZERO TO N-CNTR (1) N-CNTR (2) N-CNTR (3) N-CNTR (4).
=====> B OPEN INPUT INFILE.
000044 MOVE 'N' TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
000046 READ INFILE INTO WORK-REC
000047 AT END

------------------------------- XPEDITER/TSO - SHOW ----------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1995 COMP TIME:14:41:59
--- Before TRIMAIN:44 ->
******************************* TOP OF DATA ************************************
*** FILE ATTRIBUTES FOR APPLICATION MODULE TRIMAIN ***
 DSORG RECFM BLKSI LRECL
NON-VSAM FILE FOR DDNAME INFILE OPEN DCB = PS FB 27920 80
 DSN=SYS93271.T112126.RA000.FLGDAA1.R0000085 JFCB= PS FB 27920 80
 DATA SET ALLOCATED ON VOLUME DSCB= PS FB 27920 80
 ORGANIZATION = SEQUENTIAL ACCESS MODE = SEQUENTIAL RECFM = FB
 OPEN VERB OPTION = INPUT LAST I/O STATEMENT = OPEN STATUS = 00
*** END OF FILE ATTRIBUTE DISPLAY ***
******************************** BOTTOM OF DATA ********************************

Quick Sample Debugging Session 3-5
a P in column 9, and displays the occurrence and value of N-CNTR, as shown in Figure 3-
6 on page 3-5.

Figure 3-6. Displaying the Data Content of N-CNTR

Tab to the occurrence number and type over the 1 with a 2 and press Enter. Continue
typing over the occurrence number, each time adding 1 to the previous number.
Eventually, XPEDITER/TSO displays the warning shown in Figure 3-7, indicating that the
index boundary has been reached.

Figure 3-7. Message Indicating That the Index Boundary Has Been Reached

Press PF6 (LOCATE *) to scroll to the current execution arrow. Refer to Figure 3-8.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1995 COMP TIME:14:41:59
 -
000028 01 OUT-OF-RECS > .
 ** END **

------ -- Before TRIMAIN:44 <>
000026 10 N-NAME PIC X(21).
 1 OCCURS
000027 P 10 N-CNTR PIC 9 > 0000 DECIMAL
000028 01 OUT-OF-RECS PIC X.
000029 01 TRIANGLE-TYPE PIC 9.
000030 01 WORK-REC.
000031 05 SIDE-A PIC 9(01).
000032 05 SIDE-B PIC 9(01).
000033 05 SIDE-C PIC 9(01).
000034 B PROCEDURE DIVISION.
000035 MAIN-PARA.
000036 PERFORM INIT-PARA.
000037 PERFORM ANALYZE-NEXT-REC
000038 UNTIL OUT-OF-RECS = 'Y'.
000039 PERFORM ENDING-PARA.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 OCCURRENCE NUMBER IS OUT OF RANGE FOR ITEM
 -
000028 01 OUT-OF-RECS > .
 ** END **

------ -- Before TRIMAIN:44 <>
000026 10 N-NAME PIC X(21).
 5 OCCURS
000027 P 10 N-CNTR PIC 9 > ????? INVALID DECIMAL
000028 01 OUT-OF-RECS PIC X.
000029 01 TRIANGLE-TYPE PIC 9.
000030 01 WORK-REC.
000031 05 SIDE-A PIC 9(01).

3-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 3-8. TRIMAIN After Entering the LOCATE* Command

Enter an A line command on statement 46, setting an after breakpoint at the READ
statement. Next, type the K2 line command on statement 46 to display the contents of
working storage for WORK-REC (the second variable identified on line 46). Press Enter.
The display is shown in Figure 3-9. The K in column 9 of the window indicates that it is
an explicitly kept item and distinguishes it from the automatically kept data.

Figure 3-9. Adding an Explicit Keep (WORK-REC) to the Keep Window

Press PF12 (GO) to execute TRIMAIN. As shown in Figure 3-10, you can see that record
345 was read when the READ verb was executed. Note that the automatic keep of WORK-
REC is only partially displayed since the window contains only 5 lines. To scroll the
window, move the cursor into the window and use the PF7 and PF8 keys.

Figure 3-10. Displaying a Variable in a Keep Window

Press PF12 again. Paragraph ANALYZE-NEXT-REC is performed until EOF, and the next
record, 789, is read in the second time through the loop. WORK-REC is updated to reflect

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1995 COMP TIME:14:41:59
 -
000028 01 OUT-OF-RECS > .
 ** END **

------ -- Before TRIMAIN:44 <>
=====> MOVE “N' TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
000046 READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE 'Y' TO OUT-OF-RECS.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 1 COMMANDS(S) COMPLETED

000030 K 01 WORK-REC > ...
 -
000028 01 OUT-OF-RECS > .
 ** END **
------ -- Before TRIMAIN:44 <>
=====> MOVE 'N' TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
000046 A READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE 'Y' TO OUT-OF-RECS.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 NEXT LOGICAL INSTRUCTION IS TRIMAIN:49

000030 K 01 WORK-REC > 345
 ----+----1----+----2----+----3
SAME-> 01 IN-REC > 345

------ --- After TRIMAIN:46 <>
000044 MOVE 'N' TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
====>> A READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE 'Y' TO OUT-OF-RECS.

Quick Sample Debugging Session 3-7
the change. As you execute your program, XPEDITER/TSO updates the Keep window to
reflect the current values of the explicitly kept data.

Debugging Subroutines
Statement 51 shows that the program TRIMAIN calls TRITST and passes parameters
WORK-REC and TRIANGLE-TYPE. In order to examine how TRITST is processing these
parameters, you can set a breakpoint at the beginning of TRITST to gain control of the
execution. Type the following command on the primary command line:

BEFORE TRITST:

The colon (:) after the program name indicates program qualification. Press PF12 (GO) to
execute the program. XPEDITER/TSO sets a before module breakpoint at the beginning of
the TRITST program and pauses execution at the PROCEDURE DIVISION USING
statement in TRITST. Now, type the following command on the primary command line:

PEEK LINKAGE

The Linkage Section (refer to Figure 3-11) shows that the correct values, 789 for TST-REC
and 0 for TYPE-OF-TRIANGLE, were passed from the driver TRIMAIN.

Figure 3-11. Displaying the Linkage Section in the Called Module TRITST

Analyzing Data Flow
To better understand how the parameters are processed in the subroutine, XPEDITER/TSO
allows you to cross-reference data and to analyze the data flow in your program. The 01
level for TST-REC has three 05 levels: A, B, and C. Essentially, the elementary items are
the aliases of a group item. Type the following command on the primary command line:

FIND TST-REC ALIAS ALL

XPEDITER/TSO highlights all the statements that reference (DEFINE, MODIFY, USE) TST-
REC and its aliases. The message shown in Figure 3-12 is issued, which states how many
data definitions were found.

Note: Enhanced FIND cannot be used in nested programs. Only a string FIND is valid.

------ -- Before TRITST <>
000009 LINKAGE SECTION.

000010 P 01 TST-REC. > 789
000011 05 A PIC 9.
000012 05 B PIC 9.
000013 05 C PIC 9.
000014 P 01 TYPE-OF-TRIANGLE PIC 9 > 0 DECIMAL
=====> B PROCEDURE DIVISION USING TST-REC
000016 TYPE-OF-TRIANGLE.
000017 VALIDATE-TRIANGLE.
000018 ADD A B GIVING A-N-B.
000019 ADD A C GIVING A-N-C.
000020 ADD B C GIVING B-N-C.
000021 IF (B-N-C NOT > A) OR (A-N-C NOT > B) OR (A-N-B NOT > C)
000022 MOVE 4 TO TYPE-OF-TRIANGLE.

3-8 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 3-12. Finding Statements That Reference TST-REC

The analysis concludes that parameter TST-REC is used, but never modified in the
subroutine. What about parameter TYPE-OF-TRIANGLE? Type the following command on
the primary command line:

FIND TYPE-OF-TRIANGLE MOD ALL EXCLUDE

The EXCLUDE keyword was used to exclude lines that do not meet the search criteria. As
shown in Figure 3-13, the message 4 DATA MODS found for TYPE-OF-TRIANGLE is
displayed in the message line. This indicates the parameter was modified four times.

Figure 3-13. Result of FIND TYPE-OF-TRIANGLE MOD EXCLUDE Command

The FIND command under XPEDITER/TSO is sensitive to COBOL-structure keywords as
well as data reference keywords. For instance, you can use the FIND command to search
conditional statements or I/O statements. The highlighting effect helps you capture the
program logic and understand what the program does.

To reset all excluded lines in the program, enter END or press PF3.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 24 Data Refs: 4 DEFS, 20 USES found for TST-REC

000010 01 TST-REC > 789
000014 01 TYPE-OF-TRIANGLE > 0 DECIMAL
 ** END **

------ -- Before TRITST <>
000009 LINKAGE SECTION.

000010 P 01 TST-REC. > 789
000011 05 A PIC 9. DEF
000012 05 B PIC 9. DEF
000013 05 C PIC 9. DEF
000014 P 01 TYPE-OF-TRIANGLE PIC 9 > 0 DECIMAL
=====> B PROCEDURE DIVISION USING TST-REC USE
000016 TYPE-OF-TRIANGLE.
000017 VALIDATE-TRIANGLE.
000018 ADD A B GIVING A-N-B. 2 USE
000019 ADD A C GIVING A-N-C. 2 USE
000020 ADD B C GIVING B-N-C. 2 USE
000021 IF (B-N-C NOT > A) OR (A-N-C NOT > B)OR (A-N-B NOT > C) 3 USE
000022 MOVE 4 TO TYPE-OF-TRIANGLE.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 4 DATA MODS found for TYPE-OF-TRIANGLE

000010 01 TST-REC > 789
000014 01 TYPE-OF-TRIANGLE > 0 DECIMAL
 ** END **
------ -- Before TRITST <>
******************************** TOP OF MODULE *********************************
- - - - - - - - - - - - - - - - - - - 21 LINES NOT DISPLAYED
000022 MOVE 4 TO TYPE-OF-TRIANGLE. MOD
- - - - - - - - - - - - - - - - - - - - 5 LINES NOT DISPLAYED
000028 MOVE 1 TO TYPE-OF-TRIANGLE MOD
- - - - - - - - - - - - - - - - - - - - 2 LINES NOT DISPLAYED
000031 MOVE 2 TO TYPE-OF-TRIANGLE MOD
- - - - - - - - - - - - - - - - - - - - 1 LINE NOT DISPLAYED
000033 MOVE 3 TO TYPE-OF-TRIANGLE. MOD
- - - - - - - - - - - - - - - - - - - - 2 LINES NOT DISPLAYED
****************************** BOTTOM OF MODULE ********************************

Quick Sample Debugging Session 3-9
Tracing Logic Flow
Subroutine TRITST evaluates the type of triangle by using TST-REC and then it updates
TYPE-OF-TRIANGLE. Paragraph DETERMINE-TYPE (statement 23) has a nested IF
structure. XPEDITER/TSO can automatically trace the logic flow to show which path was
chosen. Type the following command in the primary command line to control the
tracing speed:

SET DELAY 1

Then type the following command on the primary command line and press Enter.

GO TRACE

Tracing pauses when the after breakpoint in TRIMAIN is reached, as shown in Figure 3-14
on page 3-9.

Figure 3-14. Tracing is Paused for After Breakpoint in Calling Moduel TRIMAIN

Monitoring and Reviewing the Execution Path
Type the following command on the primary command line to activate review mode for
all COBOL modules with a source listing member:

MONITOR ALL

Press PF12 (GO) to start execution, followed by another PF12 to continue execution.
When the after breakpoint is reached in TRIMAIN, type the following command on the
primary command line to change the direction of execution processing:

REVERSE

The execution status line shows that XPEDITER/TSO is reviewing in the reverse direction.
Refer to Figure 3-15.

Figure 3-15. Review Mode Execution

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 NEXT LOGICAL INSTRUCTION IS TRIMAIN:49

000030 K 01 WORK-REC > 563
 ----+----1----+----2----+----3
SAME-> 01 IN-REC 563

------ --- After TRIMAIN:46 <>
000044 MOVE 'N' TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
====>> A READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE 'Y' TO OUT-OF-RECS.

 ------ ---Reverse - After TRIMAIN:46 <>
 000044 MOVE 'N' TO OUT-OF-RECS.
 000045 ANALYZE-NEXT-REC.
 ====>> A READ INFILE INTO WORK-REC
 000047 AT END

3-10 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Now step through each statement backwards by pressing PF9 (GO 1) several times. Data
values in the Keep window redisplay the original state as the MOVE, ADD, and READ
verbs are being “undone.”

You can remove explicitly kept data from the Keep window by typing the following
command in the primary command line:

DELETE KEEP

If you want to remove a certain data item from the Keep window, type the D line
command on the appropriate line. Press PF4 (EXIT) to exit the debugging session and to
return to the Standard test screen.

4-1

Chapter 4.

4Getting Started Chap 4

This chapter discusses the following:

• The XPEDITER/TSO Primary Menu.

• Preparing your programs to be processed with XPEDITER/TSO and XPEDITER/IMS.
Refer to “Preparing Your Programs” on page 4-3.

• Starting an XPEDITER debugging session in interactive mode. Refer to “Starting an
Interactive Session” on page 4-15.

• Starting an XPEDITER debugging session through the Batch Connect facility (for
interactive or unattended batch debugging). Refer to “Starting a Batch Connect
Session” on page 4-20.

• Manually changing your execution JCL to debug with XPEDITER/TSO in interactive
(Batch Connect) or unattended batch mode. Refer to “Starting a Session With Batch
JCL” on page 4-43.

Note: XPEDITER/IMS can only be invoked in interactive mode.

• Using script files for test session management. Refer to “Test Session Management
Using Scripts” on page 4-48.

• Accessing other systems from XPEDITER. Refer to “Accessing Other Systems From
XPEDITER/TSO” on page 4-54.

The XPEDITER/TSO Primary Menu
The Primary Menu is the first screen displayed upon entry to XPEDITER/TSO. The
options on the Primary Menu are used to prepare the programs for execution, provide all
the information needed to execute the program, and invoke the test session. It also
provides a gateway to other Compuware products. The Primary Menu for XPEDITER is
shown in Figure 4-1 on page 4-2.

Notes:
1. Only the options that have been installed at your site appear on your Primary Menu.
2. First time users will automatically see the bulletin containing the new features for

this release.

4-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 4-1. Primary Menu for XPEDITER

The Primary Menu has the following options:

0 DEFAULTS

Specifies defaults for your terminal, PF keys, profile, and screen colors. Refer to
Appendix D, “Specifying Session Defaults”.

1 PREPARE

Accesses the Program Preparation Menu where you can:

– Convert your JCL to compile your programs with the Compuware Shared Services
COBOL language processor.

– DB2 precompile, compile, link-edit, and EXEC CICS translation.

– Bind application plans or packages with File-AID for DB2.

– Create and edit lists of the files and databases that have to be allocated for your
program to execute properly.

2 TSO

Invokes an interactive XPEDITER/TSO and XPEDITER/IMS debugging session. Refer
to “Starting an Interactive Session” on page 4-15.

3 BATCH

Invokes an XPEDITER/TSO test session in batch and allows you to interactively
connect to the batch job for debugging. Refer to “Starting a Batch Connect Session”
on page 4-20.

4 STORED PROC

Invokes a DB2 Stored Procedure debugging session.

5 UTILITIES

Accesses miscellaneous utility functions that can be used to query available region
size, list dataset allocations, maintain DDIO datasets, convert script files
(INCLUDES), and convert profiles from previous releases. Refer to Appendix E,
“XPEDITER/TSO Utilities”.

 ---------------------- XPEDITER/TSO 7.4 - PRIMARY MENU ----------------------
 OPTION ===>

 0 DEFAULTS - Specify defaults
 1 PREPARE - Prepare programs for debugging
 2 TSO - Debug programs interactively under TSO
 3 BATCH - Debug programs interactively under batch
 4 STORED PROC - Debug DB2 Stored Procedures interactively
 5 UTILITIES - Perform utility functions
 F FADB2 - Invoke File-AID for DB2
 FA FILE-AID - Invoke File-AID for MVS
 FI FILE-AID/IMS - Invoke File-AID for IMS
 C CODE COVERAGE - Code Coverage Reports and Utilities
 CS CICS - Connect to a CICS region
 T TUTORIAL - Display information about XPEDITER/TSO
 X EXIT - Exit primary menu

 Profile ===> DEFAULT - *** NO DESCRIPTION ***

 For Online Technical Support Reference: http://frontline.compuware.com
 COPYRIGHT (C) 2005, Compuware Corporation. All rights reserved.
 (800) 538-7822

 Press ENTER to process or enter END command to terminate

Getting Started 4-3
F FADB2

Invokes File-AID for DB2, which is Compuware’s powerful and easy to use DB2
database management, application development, and performance analysis tool.
Refer to the File-AID for DB2 Reference Manual for information about using File-AID for
DB2.

FA FILE-AID

Invokes File-AID for MVS. Refer to the File-AID for MVS Reference Manual for
information about using File-AID for MVS.

FI FILE-AID/IMS

Invokes File-AID for IMS. Refer to the File-AID for IMS Reference Manual for information
about using File-AID for IMS.

C CODE COVERAGE

Invokes XPEDITER/Code Coverage, a product which is only available if you have
purchased it. When you run a test using Code Coverage, you are able to track every
statement you have executed in the normal work flow while running the test. Refer
to the XPEDITER/Code Coverage Mainframe User/Reference Guide for more information
about using XPEDITER/Code Coverage.

CS CICS

Connects to a CICS region for testing or any other CICS function. Refer to “Accessing
Other Systems From XPEDITER/TSO” on page 4-54.

B BULLETIN

Displays a summary of changes for this release. This option is automatically
displayed when you first log onto the system. A similar version of this information is
contained in the “Summary of Changes” in the XPEDITER/TSO and XPEDITER/IMS
Installation Guide.

T TUTORIAL

Provides general or specific information about an XPEDITER/TSO command, screen,
or message.

Note: Help can also be accessed by pressing PF1 or entering HELP on the command
line of any screen.

Once you are in the Tutorial, you can continue to press Enter to see subsequent pages
of help text. The UP, BACK, NEXT, INDEX, and HELP subcommands can be used to
quickly locate a particular topic.

Use the END command to terminate the HELP function.

X EXIT

Exits XPEDITER/TSO.

PROFile

Specifies the current profile. Refer to “Using Profiles” on page 4-16.

Preparing Your Programs
XPEDITER/TSO provides online program preparation facilities that can be used to
precompile, compile, and link-edit your programs, convert your existing JCL to compile
your programs with Compuware’s Shared Services (CSS) COBOL language processor, bind
programs for DB2 processing, and prepare file allocation lists.

To debug a program symbolically at the source level with XPEDITER, it must be compiled
with the COBOL language processor. When activated, the language processor (LP) accepts

4-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
the source code, invokes the specified compiler, and waits until the compile step is
complete. It then analyzes the program listing, produces a source listing member, and
writes the source listing member to the DDIO file. XPEDITER refers to the symbolic
information and maps the source representation to the load module, so that you can
debug your program interactively at the source level.

Notes:

1. XPEDITER requires specific compile options which may vary depending on the
language type and actual version being used. A user should always refer to the
appropriate CSS User/Reference Guide for information related to any required compiler
options. Examples are: (1) Options NOTEST and NONUMBER are required for
COBOL; (2) Option NOTEST is required for PL/I, and (3) Options ESD and LIST are
required for Assembler. The Guide is required to assist users in manually converting
Compile and Link JCL to execute the CSS Language Processor. The Guide also gives
most users information on how to set up the Language Processor parameters to write
a matching source listing to a DDIO file.

2. If you use a postprocessed source listing with XPEDITER/TSO, you may lose some
XPEDITER/TSO functions. If the source listing contains the COPY SUPPRESS
statement, the XPEDITER/TSO commands FIND, PEEK, and KEEP will not work
properly.

If the source listing contains the PRINT NOGEN statement, the XPEDITER/TSO GEN
command will not work properly.

The postprocessed source listing must be compiled with the options required for
XPEDITER/TSO; otherwise, the results are unpredictable.

3. If your program is a DB2 program and XPEDITER for DB2 Extension and File-AID for
DB2 are installed at your site and you want to dynamically insert SQL statements or
use the EXPLAIN command, you must precompile, compile, link-edit your program,
and bind your application plan using File-AID for DB2 DBRMs. Refer to Appendix F,
“Binding the Application Plan or Package” for information about binding.

To access the XPEDITER/TSO program preparation facilities, enter 1 (PREPARE) on the
XPEDITER/TSO Primary Menu. The Program Preparation Menu shown in Figure 4-2 is
displayed.

Figure 4-2. Program Preparation Menu

The options on this menu are:

 ------------------ XPEDITER/TSO - PROGRAM PREPARATION MENU ------------------
 OPTION ===>

 1 CONVERT COMPILE JCL - Convert compile JCL for XPEDITER
 2 COMPILE FACILITY - Compile programs for XPEDITER
 3 BIND FACILITY MENU - Bind application plans or packages
 4 EDIT ALLOCATION LIST - Edit or Create file allocation lists

 For the COMPILE FACILITY, you may enter a separate Profile ID
 below. This will allow you to save the compile parameters
 separatly for different compiles. A '?' in the profile field will
 display a list of profiles to select from. From that list the
 profiles can be maintained (ie, COPY, RENAME, DELETE, etc.).

 Compile Profile => DEFAULT > DEFAULT COMPILE PROFILE <

 Press ENTER to process or enter END command to terminate

Getting Started 4-5
1 CONVERT COMPILE JCL

Automatically converts your compile JCL to compile your programs with the COBOL
language processor. After the JCL is converted, it can be submitted for processing.

2 COMPILE FACILITY

Precompiles DB2 statements, translates CICS commands, compiles, and link-edits
your programs based on the information you enter. If you are processing in batch,
the JCL is automatically built to compile with the language processor and the job is
submitted. If you are processing in foreground, the compile is performed using ISPF
and TSO command functions.

3 BIND FACILITY MENU

Displays the BIND FACILITY MENU, which has two options: 1 BIND PLAN FACILITY
and 2 BIND PACKAGE FACILITY. The first helps you set up DB2 bind plan options,
specify DBRM libraries, and submit the bind. The second helps you set up DB2 bind
package options and submit the bind. For more information about binding, refer to
Appendix F, “Binding the Application Plan or Package”.

4 EDIT ALLOCATION LIST

Invokes the File Allocation Utility (FAU) to create and allocate the files your program
will need to execute. The FAU is only used when you are debugging in interactive
mode, and usually only when you want to create a file list, or when problems are
encountered while allocating the files. Refer to Appendix A, “Using the File
Allocation Utility” for information about using the FAU.

The file allocation enhancement which provides your user the ability to point XPEDITER
at the JCL needed to run a test is known as Quickstart. Quickstart eliminates the need to
utilize the File Allocation Utility (FAU) for DB2.

Options 1 and 2 are both compile facilities and are discussed in this chapter. Refer to the
referenced appendices for information about options 3 and 4.

Converting Your Compile JCL

To automatically convert your existing compile JCL to run with the CSS language
processor, type 1 (CONVERT COMPILE JCL) in the Program Preparation Menu OPTION
field and press Enter. The Convert Compile JCL screen shown in Figure 4-3 on page 4-6 is
then displayed.

Notes:

1. If your compile JCL is not available for conversion, use the Compile Facility (Option
2 on the Program Preparation Menu), which will create the compile JCL to run with
the CSS language processor. On the Compile screen, use the Editjcl option in the
Preparation field.

2. A JCL error may occur when converting a compile JCL (PROC) if a symbol is used on
the XCOMPILE DD.

4-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 4-3. Convert Compile JCL Screen

In the ISPF Library field or the Other Partitioned or Sequential Dataset field, type the
name of the dataset containing the JCL normally used to compile programs.

In the DDIO File field, type the name of the DDIO file into which the source listing will
be placed. If you do not have a DDIO file, one can be created through the DDIO File
Facility. Refer to “DDIO File Facility” on page E-3. If you want to create a Shared
Directory, an LP database, or both, refer to the Compuware Shared Services User/Reference
Guide or use the online CSS Utilities application (if installed).

In the Options Dataset field, type the name of the dataset containing LP options. If no
dataset is specified, system defaults are used. LP options are general compile time options
used by LP to control the source listing output for each language.

After completing the screen, you can:

• Use the BROWSE or EDIT command to display the JCL for viewing or editing.
• Use the SETUP command to set up the job card for JCL expansion.

When you press Enter, the JCL is submitted for conversion. If the conversion operates
successfully, the converted JCL is displayed as shown in Figure 4-5 on page 4-8, with the
message JCL HAS BEEN MODIFIED TO COMPILE WITH XPEDITER. From this screen,
you can submit the job with the RUN or SUBMIT commands or use the END command to
return to the previous screen.

Note: If you return to the previous screen, the converted JCL is not saved.

An example of the JCL before conversion is shown in Figure 4-4 on page 4-7, and an
example of the JCL after conversion is shown in Figure 4-5 on page 4-8.

------------------- XPEDITER/TSO - CONVERT COMPILE JCL -------------------------
COMMAND ===>

Primary Commands: blank (Process JCL) Browse Edit SEtup

ISPF Library:
 Project ===>
 Group ===> ===> ===> ===>
 Type ===>
 Member ===> (Blank for member selection list)

Other Partitioned or Sequential Dataset:
 Dataset Name ===>
 Volume Serial ===> (If not cataloged)

Language Processor Related Items:
 DDIO File ===>
Options Dataset ===>

 Press ENTER to process or enter END command to terminate

Getting Started 4-7
Figure 4-4. Compile JCL Before Conversion

000001 //FLGFGR1S JOB (ACCOUNT),'NAME',CLASS=A,MSGCLASS=X,NOTIFY=FLGFGR1
000002 //*
000003 //*
000004 //COMPILE EXEC PGM=IKFCBLOO,REGION=4M,COND=(8,LT),
000005 // PARM=('APOST,MAP,XREF,LIST')
000006 //STEPLIB DD DSN=SYS4.VS.COBOL.COBLIB,DISP=SHR
000007 //SYSTERM DD SYSOUT=(*)
000008 //SYSPRINT DD SYSOUT=(*)
000009 //SYSPUNCH DD DUMMY
000010 //SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,2))
000011 //SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,2))
000012 //SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,2))
000013 //SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(2,2))
000014 //SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(2,2))
000015 //SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(2,2))
000016 //SYSLIN DD UNIT=SYSDA,DISP=(NEW,PASS),
000017 // SPACE=(CYL,(1,1)),DCB=(,BLKSIZE=400)
000018 //SYSIN DD DSN=FLGFGR1.COBOL.SOURCE(TRIRPT),DISP=(SHR,PASS)
000019 //*
000020 //LINK EXEC PGM=IEWL,REGION=1M,COND=(8,LE),
000021 // PARM=('LIST,LET')
000022 //SYSPRINT DD SYSOUT=(X)
000023 //SYSLIN DD DSN=*.COMPILE.SYSLIN,DISP=(SHR,PASS)
000024 //SYSLIB DD DSN=FLGFGR1.COBOL.LOADLIB,DISP=SHR,
000025 // DCB=BLKSIZE=32760
000026 // DD DSN=SYS4.VS.COBOL.LINKLIB,DISP=SHR
000027 //SYSLMOD DD DSN=FLGFGR1.COBOL.LOADLIB(TRIRPT),DISP=SHR
000028 //SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,2))

4-8 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 4-5. Compile JCL After Conversion

To access the compile facility, type 2 (COMPILE FACILITY) in the Program Preparation
Menu OPTION field and press Enter. The Compile Facility screen shown in Figure 4-6 on
page 4-9 is displayed.

On this screen, you will specify what you want to do (DB2 precompile, translate CICS
commands, compile and/or link edit), the name of the dataset to be used, how the job is
to be run, and the program language. Depending on your input, you are presented with
additional screens where you can enter more detailed information.

JCL HAS BEEN MODIFIED TO COMPILE WITH XPEDITER.
==MSG> *===*
==MSG> * COMMANDS: *
==MSG> * SUB - SUBMIT THIS JOB *
==MSG> * RUN - SUBMIT THIS JOB AND CHECK STATUS *
==MSG> * END - RETURN TO PREVIOUS PANEL *
==MSG> *===*
000001 //FLGFGR1S JOB (ACCOUNT),'NAME',CLASS=A,MSGCLASS=X,NOTIFY=FLGFGR1
000002 //*
000003 //*
==MSG> *** THE FOLLOWING STEP IS MODIFIED TO COMPILE WITH XPEDITER ***
000004 //COMPILE EXEC PGM=CWPCMAIN,REGION=4M,COND=(8,LT), UPDATED
000005 // PARM=('APOST,MAP,XREF,LIST')
000006 //STEPLIB DD DISP=SHR,DSN=COMPUWARE.CSS.LOADLIB INSERTED
000007 // DD DSN=SYS4.VS.COBOL.COBLIB,DISP=SHR UPDATED
000008 //SYSTERM DD SYSOUT=(*)
000009 //SYSPRINT DD SYSOUT=(*)
000010 //SYSPUNCH DD DUMMY
000011 //SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,2))
000012 //SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,2))
000013 //SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,2))
000014 //SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(2,2))
000015 //SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(2,2))
000016 //SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(2,2))
000017 //SYSLIN DD UNIT=SYSDA,DISP=(NEW,PASS),
000018 // SPACE=(CYL,(1,1)),DCB=(,BLKSIZE=400)
000019 //SYSIN DD DSN=FLGFGR1.COBOL.SOURCE(TRIRPT),DISP=(SHR,PASS)
000020 //*
000021 //XOPTIONS DD DISP=SHR,DSN=XT.XT70B1.XOPTIONS INSERTED
000022 //CWPDDIO DD DISP=SHR,DSN=FLGFGR1.COBOL.DDIO INSERTED
000023 //CWPPRMO DD * INSERTED
000024 COBOL(OUTPUT(PRINT,DDIO))
000025 PROCESSOR(OUTPUT(NOPRINT,NODDIO),TEXT(NONE))
000026 LANGUAGE(VSCOBOL)
000027 DDIO(OUTPUT(NOLIST,NOXREF,FIND,NODMAP,NOOFFSET,COMPRESS))
000028 //* INSERTED
000029 //LINK EXEC PGM=IEWL,REGION=1M,COND=(8,LE),
000030 // PARM=('LIST,LET')
000031 //SYSPRINT DD SYSOUT=(X)
000032 //SYSLIN DD DSN=*.COMPILE.SYSLIN,DISP=(SHR,PASS)
000033 //SYSLIB DD DSN=FLGFGR1.COBOL.LOADLIB,DISP=SHR,
000034 // DCB=BLKSIZE=32760
000035 // DD DSN=SYS4.VS.COBOL.LINKLIB,DISP=SHR
000036 //SYSLMOD DD DSN=FLGFGR1.C.LOADLIB(TRIRPT),DISP=SHR
000037 //SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,2))

Getting Started 4-9
Figure 4-6. Compile Facility Screen

The definitions for each field and option on the Compile Facility screen are:

Compile Profile

The XPEDITER Compile Facility provides for separate compile profiles. This allows
you to save the input dataset name, compile options, compile DDIO, compile
LOADLIB name, and link options in different profiles. You are given the flexibility to
name the profiles in any manner you choose. This permits you to use program
names, generic compile processes, or special compile group names.

To maintain these profiles, you must enter a ? in the profile name when entering the
compile facility. Doing this will cause a list of the current compile profiles to appear
on your screen for your analysis. At this point, you can Delete, Copy, Rename, and
Select different profiles.

Source Dsname

Type the name of the dataset containing the program to be processed. Type the
object dataset name for link-edit only.

Note: If you do not enter a member name in this field, a member list is displayed.
Selecting a member name on the member list screen automatically builds the
JCL and submits the job if Batch is specified in the Preparation field. If
Editjcl is specified, the JCL is built and you can edit the JCL before
submitting the job. If Foreground is specified, the program is automatically
compiled in foreground. As the job is processing, the third line on the
member list shows the status of the job. When the job completes, the return
code is displayed next to the member name. You can use the L (Listing) line
command to view the source listing associated with the member.

Preparation

Specify one of the following:

Batch Builds the JCL and submits the JCL to compile in batch.

Editjcl Builds the JCL and allows editing of the JCL after it is built. The
JCL can be submitted from the Edit screen.

Foreground Compiles the program in foreground.

 ---------------------- XPEDITER/TSO - COMPILE FACILITY ------------------------
 COMMAND ===>

 Primary Commands: Listing (Display output) SEtup (Display general settings)

 Compile Profile: HLASM -

 Source Dsname ===> 'COMPWARE.XT.SLXTSAMP(TRIDB2)'
 Preparation ===> EDITJCL (Batch/Editjcl/Foreground)
 Language ===> COB2 Select From The List Below
 (COB/COB2/COB370/COBMVS/COB390/E-COBOL/CAOPT/HASM/HLASM/PLI/PLI370)
 (VAPLI/E-PLI/CMVS/C390/CZOS)

 SEL Options: D - Display settings
 S - Process only

 SEL STEPS S - Select DB2 Precompile libraries
 --- ------------------- -----------------------------------
 D 1. DB2 Precompile _ D510 _ D51A
 _ 2. CICS Translation _ D610 _ D61A
 S 3. Compile _ D71B _ D71A
 S 4. Linkedit _ D719 _ D71C

4-10 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Language

Enter the program language type.

SEL Options

Enter the SEL options in the SEL field to specify the actions to be performed (DB2
precompile, translate CICS commands, compile, and/or link-edit). The SEL options
are:

DB2 Precompile Libraries

The primary commands are used as follows:

Listing

Displays the compile listing output.

SEtup

Displays the General Settings screen on which you can override the default general
settings, such as listing ID, SYSOUT class, job card information, and so on.

The General Setting screen and the settings screens for each option are described below.

General Settings Screen

The General Settings screen shown in Figure 4-7 is used to override the default settings
for processing a job.

D Displays the settings screen for the action. The settings screen is used to
provide additional information about the action you are performing. When
you press the Enter key, the settings screen for the first action you selected is
displayed. When you press Enter on the displayed settings screen, the settings
screen for the next selected action is displayed, and so forth.

S Processes the selected action without displaying the settings screen.

S Select one DB2 system name that will be used to retrieve the DB2 libraries
from the DSNLOAD screen for the current Test Profile (located on the
Primary Menu). If a DB2 system name is not selected, the installation
default DB2 libraries will be used. These libraries will be used in the STEPLIB
of the DB2 precompile step.

Getting Started 4-11
Figure 4-7. General Settings Screen

Listing ID

Type the dataset name for the source listing output. If blank, the listing output is
directed to SYSOUT for batch processing and to prefix.MEMBER.list for foreground
processing.

SYSOUT Class

Specify the SYSOUT class to which output is routed.

Monitor Status

Specify whether the status of the job should be monitored. If Y is entered, the Submit
Status screen is displayed. The Attn key can be used to cancel monitoring at any
time.

Display Results

Specify whether the results of the steps should be displayed after the job completes.

Job Statement

Specify job card information if the execution environment is batch or Editjcl. This
information is optional if your site has a submit exit.

DB2 Precompile Step Screen

The DB2 Precompile Step screen shown in Figure 4-8 is used to specify the settings and
options for the DB2 precompile.

------------------- COMPILE FACILITY - GENERAL SETTINGS -----------------------
COMMAND ===>

 Listing ID ===> (Optional)

Batch Processing Items:
 SYSOUT Class ===> X
 Monitor Status ===> Y (Y/N)
 Display Results ===> Y (Y/N)

Job Statement
===> //PFHABC1A JOB (ACCOUNT),'NAME',CLASS=A,MSGCLASS=X
===> //*
===> //*
===> //*

 Press ENTER to update or enter END command to terminate

4-12 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 4-8. DB2 Precompile Step Screen

The definitions for the fields and options on this screen are:

DB2 Precompile libraries

This is a display of the libraries that were matched to the selected DB2 system name
from the Compile Facility screen. These libraries will be used in the STEPLIB DD of
the DB2 precompile step.

Options

Enter the DB2 precompile options. If a parameter cannot fit on the first line, use the
second line. For information about these options, refer to the appropriate IBM
manual.

DBRM library

Type the dataset name to which the precompiled output is written. This dataset is the
input to the bind process. If no dataset name is specified, a default is created with
DSORG=PO.

SYSLIB Datasets

Enter the names of the datasets to be used as secondary input. These datasets must be
partitioned, RECFM=F or FB, and LRECL=80.

CICS Translation Step Screen

The CICS Translation Step screen shown in Figure 4-9 is used to specify the options for
EXEC CICS and EXEC DLI command translation.

 -------------------- DB2 PRECOMPILE STEP - VS COBOL II ------------------------
 COMMAND ===>

 DB2 Precompile libraries ==>'DSN610.D610.SDSNEXIT'
 ==>'DSN610.SDSNLOAD'

 Options ===> APOST
 ===>

 DBRM Library ===>

 SYSLIB Datasets:
 (1) ===>
 (2) ===>
 (3) ===>
 (4) ===>
 (5) ===>
 (6) ===>
 (7) ===>
 (8) ===>

 Press ENTER to update or enter END command to terminate

Getting Started 4-13
Figure 4-9. CICS Translation Step Screen

Options

Enter the CICS command translation input/output parameter options. If a parameter
cannot fit on the first line, use the second line. Refer to the appropriate IBM manual
for information about the options.

Compile Step Screen

The Compile Step screen shown in Figure 4-10 is used to specify the settings and options
for the compile.

Figure 4-10. Compile Step Screen

-------------------- CICS TRANSLATION STEP - OS/VS COBOL ----------------------
COMMAND ===>

 Options ===>
 ===>

 Press ENTER to process or enter END command to terminate

------------------------ COMPILE STEP - OS/VS COBOL ---------------------------
COMMAND ===>

 Options ===>
 ===>

 SYSLIB Datasets:
 (1) ===>
 (2) ===>
 (3) ===>
 (4) ===>
 (5) ===>
 (6) ===>
 (7) ===>
 (8) ===>

 Object Library ===>

 DDIO File ===>
 LP Options DSN ===>

 Press ENTER to update or enter END command to terminate

4-14 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
The definitions for the fields and options on this screen are:

Options

Enter the compile parameter options. If a parameter option cannot fit on the first
line, use the second line. Refer to the appropriate IBM language manual for
information about the options.

XPEDITER requires specific compile options which may vary depending on the
language type and actual version being used. A user should always refer to the
appropriate CSS User/Reference Guide for information related to any required compiler
options. Examples are: (1) Options NOTEST and NONUMBER are required for
COBOL; (2) Option NOTEST is required for PL/I, and (3) Options ESD and LIST are
required for Assembler. The Guide is required to assist users in manually converting
Compile and Link JCL to execute the CSS Language Processor. The Guide also gives
most users information on how to set up the Language Processor parameters to write
a matching source listing to a DDIO file.

SYSLIB Datasets

Type the names of the datasets to be used for copy and copybook processing. A
maximum of 8 names can be specified.

Statistics

Type the name of the CA-Optimizer statistics dataset. This field only appears when
CAOPT is specified for the application language.

Object Library

Optional. Specify the object library name. If blank, a temporary dataset is used.

DDIO File

Type the name of the DDIO file to which the source listing is written after the
compile is complete. If blank, the system prompts you to create a DDIO file. Refer to
“DDIO File Facility” on page E-3 for information about creating this file. If you
would like to create a Shared Directory dataset and/or an LP database, refer to the
Compuware Shared Services User/Reference Guide or use the online CSS Utilities
application (if installed).

LP Options DSN

Optional. Type the name of the user dataset containing the language processor
options. If blank, the system defaults are used.

Note: Language processor options are general compile time options used by the LP
to control source listing output for all languages. Contact your local
technical support.

Linkedit Step Screen

The Linkedit Step screen shown in Figure 4-11 on page 4-15 is used to specify the settings
and options for the link-edit.

Getting Started 4-15
Figure 4-11. Linkedit Step Screen

The definitions for the fields and options on this screen are:

Options

Enter the linkage editor parameter options. If a parameter cannot fit on the first line,
use the second line. All link-edit options are supported except OVLY and NE. Refer to
the appropriate IBM manual for more information about these options.

Load Library

Specify the name of a partitioned dataset to contain the load module after the link-
edit is completed. If blank, the system will generate a dataset name that follows the
dataset naming conventions.

SYSLIB Datasets

Enter the names of the datasets to be searched by the linkage editor to locate object
modules referenced by the module being processed. A maximum of 8 names can be
specified.

SYSLIN Control Statements

Specify the control card statements in this field.

Starting an Interactive Session
To start an interactive debugging session, do the following:

1. Access the XPEDITER/TSO Primary Menu.

Note: If you want to change the defaults for your terminal, PF keys, screen colors,
profile, etc., use option 0. Refer to Appendix D, “Specifying Session Defaults”
for more information.

2. Optionally, specify a new or existing profile for the debugging session. When a
profile is not specified, a default profile is used. Refer to “Using Profiles” on page
4-16.

3. Use option 2 (TSO) on the XPEDITER/TSO Primary Menu. Secondary screens are
displayed for specifying the program name and information about the environment
in which the program will execute.

------------------------------- LINKEDIT STEP ---------------------------------
COMMAND ===>

 Options ===>
 ===>

 Load Library ===> ‘PFHABC0.LOADLIB’

 SYSLIB Datasets:
 (1) ===>
 (2) ===>
 (3) ===>
 (4) ===>
 (5) ===>
 (6) ===>
 (7) ===>
 (8) ===>

SYSLIN Control Statements: (Note: INCLUDE SYSLIB(DFHELII) will be generated.)
===>
===>

 Press ENTER to update or enter END command to terminate

4-16 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
The SETUP command shown on some of the secondary screens can be used to
override the installed setup options, such as the name of the load library and DDIO
dataset, log disposition, and so on. The Setup Facility is discussed in detail in
Appendix C, “Specifying Setup Options”.

4. Allocate the files and databases that your program will need to execute. Refer to
“Allocating the Required Files” on page 4-18.

Using Profiles

The information you specify for a debugging session is recorded in a user profile that can
be used each time you want to execute the same test session again. This information
includes the name of the program, the list of files and databases that must be allocated
for the program to execute, the setup options for the environment in which the program
will execute, and the XPEDITER/TSO defaults to be associated with the test session. It
also contains the defaults established by your systems programming staff during
installation of XPEDITER/TSO.

The profile identifier and description are displayed in the Profile field on the Primary
Menu. The Profile field can be used to:

• Create a New Profile
• Use an Existing Profile
• Obtain a List of Profiles.

Changes to a user profile are made through the XPEDITER Profile screen shown in Figure
D-10 on page D-7. This screen can also be accessed through option 0 (Defaults) on the
Primary Menu or by entering the PROFILE command from the Primary Menu screen or
any test screen. Refer to “Specifying User Profiles” on page D-6 for information about the
Profile facility.

Invoking the Test Session

The first time you invoke an XPEDITER test session using option 2 (TSO) on the Primary
Menu, the Environments Menu shown in Figure 4-12 on page 4-17 is displayed.

Note: Subsequent invocations of XPEDITER/TSO will display the last environment test
screen that was used. The Environments Menu is only displayed again when you
are creating a new profile or when you access it through the setup facility using
the SETUP command. The SETUP command is discussed briefly later in this
section and in more detail in Appendix C, “Specifying Setup Options”.

Getting Started 4-17
Figure 4-12. Environments Menu

The range of environment options shown on this menu depends on the site defaults set
by your installer. More information about the environments is provided in “Guidelines
for Selecting an Environment” on page 4-17.

Each option on the Environments menu accesses an environment test screen on which
you enter information about your program and the test session. For example, if you are
testing a program in the standard environment with no special services, you would enter
option 1 (STANDARD) on the Environments Menu and the Standard test screen would be
displayed.

Environment test screens are used to specify all of the information required about the
program and test session. All environment test screens are described in Appendix B,
“XPEDITER/TSO Environment Test Screens”.

If you type SETUP on the command line of the environment test screen, the Setup Menu
is displayed. The options on the Setup Menu provide additional screens on which you
can change the installed values for the listed options, such as load library names, DDIO
file name, log disposition, and so on. All setup menus and screens are described in
Appendix C, “Specifying Setup Options”.

When you complete the test screen and specify all setup information, an XPEDITER/TSO
test session is started. Your source is displayed on the XPEDITER/TSO source display
where all debugging functions are available for your use. The debugging functions are
discussed in Chapter 5, “Debugging Interactively”.

Guidelines for Selecting an Environment

The XPEDITER/TSO options (1 through 7) on the Environments Menu screen displayed
in Figure 4-12 invoke a debugging session and execute the application program in the
TSO address space. The XPEDITER/IMS options (8 through 11) on the Environments
Menu invoke a debugging session and execute the IMS/DC application program in the
message region, the BMP region, and the Fast Path region.

If you are developing IMS/DC applications, XPEDITER/IMS provides the capability of
debugging IMS/DC programs that are actually running in the IMS dependent regions,
whereas XPEDITER/TSO provides the capability of debugging IMS/DC applications with
the use of a simulator (BTS) under TSO. Operations of XPEDITER/IMS, however, require
at least one logical TSO terminal and one logical IMS terminal (it can be an ATM
terminal), both on the same CPU.

Profile: DEFAULT ------- XPEDITER/TSO - ENVIRONMENTS MENU ----------------------
OPTION ===>

 XPEDITER/TSO
 1 STANDARD - Test a program with no special environment services
 2 DIALOG - Test programs that make ISPF dialog manager calls
 3 IMS - Test a program that makes IMS/DB calls
 4 BTS - Test programs using BTS
 5 BATCHPEM - Test a program in a HOGAN BATCHPEM environment
 6 DLIPEM - Test a program in a HOGAN DLIPEM/BMPPEM environment
 7 IMSPEM - Test a program in a HOGAN BTS IMSPEM environment

 XPEDITER/IMS
 8 MPP - Test programs in an IMS message region
 9 BMP/IFP - Test a program in a BMP or Fast Path region
 10 IMSPEM - Test HOGAN IMSPEM in an IMS message region
 11 BMPPEM - Test HOGAN BMPPEM in a BMP region

 Press ENTER to process or enter END command to terminate

4-18 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
The following table summarizes the environment options to choose, depending on the
type of application you want to debug:

Allocating the Required Files

This section tells you how to interactively specify a file list to be used at execution time
to allocate the files and databases your program needs.

Note: All files used by your program must be allocated, or your program will abend as if
you had omitted a DD statement from a batch run.

Allocating the files your program will need is as easy as entering the dataset name of an
existing file list, a CLIST, or your execution JCL (also identified as Quickstart) in the File
List/JCL Member field on the environment test screen.

There may be times when you may need to allocate files after starting a test session. This
can be done with the ALLOCATE command, which can be entered from any
XPEDITER/TSO screen.

At other times, you may need to use the File Allocation Utility (FAU), a file list editor that
lets you create and edit file lists. The FAU is accessed through option 1 on the
XPEDITER/TSO Primary Menu. When errors occur during file allocations while using the
test screen or the ALLOCATE command, the FAU is automatically accessed to assist you
in resolving the problem.

Table 4-1. Guidelines for Choosing an Environment

Environment Option Type of Application Program

STANDARD • Batch programs that process QSAM and VSAM files.

• Batch programs that issue EXEC SQL (DB2) statements.

• Batch programs that issue third-party database calls (IDMS/DB,
ADABAS, TOTAL, TIS, SUPRA, DATACOM/DB, System 2000).

DIALOG • Dialog applications composed of screens, CLISTs, load modules,
messages, command tables, and file-tailoring skeletons.

• Programs that run as part of a user-provided system involving
multiple tasks.

IMS • Batch programs that issue CBLTDLI (IMS/DB) calls.

• Batch programs that issue CBLTDLI (IMS/DB) calls and EXEC SQL
(DB2) statements.

• IMS BMP programs. Refer to BMP/IFP.

BTS • IMS/DC MPP programs with the use of BTS. Refer to MPP option.

BATCHPEM • Hogan BATCHPEM applications or the BATCHPEM driver module
itself.

DLIPEM • Hogan DLIPEM applications or the DLIPEM driver module itself.

IMSPEM • Hogan IMSPEM applications or the driver module itself with the use
of BTS.

MPP • IMS/DC MPP programs in the IMS message region. Refer to BTS
option.

BMP/IFP • IMS BMP programs. Refer to IMS option.

• Fast Path programs in the IMS Fast Path region.

IMSPEM • Hogan IMSPEM applications or the driver module itself in the IMS
MPP region.

BMPPEM • Hogan BMPPEM applications or the driver module itself in the IMS
BMP region.

Getting Started 4-19
Each of these methods is used for a somewhat different purpose. The first two methods
are described below. A description of the File Allocation Utility is provided in Appendix
A, “Using the File Allocation Utility”.

Allocating From the Test Screen

The easiest and most commonly used way to allocate the files your program will need is
to enter the name of the dataset containing the file list, CLIST, or the program execution
JCL (also identified as Quickstart) in the File List/JCL Member field on the environment
test screen as shown in the following example:

File List/JCL Member ===> ’XT.XT70.FAU(TRIMAIN)’

If the dataset contains a file list or CLIST and there are no errors, the files are
automatically allocated.

If the dataset contains JCL, the following occurs before the files are allocated:

1. If the JCL executes a PROC, the PROC is automatically expanded. Refer to “Things to
Know About JCL Expansion” on page A-16 for more information.

2. JCL DD statements are automatically converted to the file list format. The conversion
rules are as follows:

– SMS keywords, in-stream data, ROUND (and other space parameters), SYSOUT
related parameters (HOLD, COPIES, DEST, etc.) are processed.

– JCL statements that do not have the corresponding SVC 99 support are processed
by ignoring the keywords and parameters. This situation will take place, for
instance, when VSAM AMP parameters are encountered.

– The program references EXEC PGM=*.xxx.yyy cannot be processed. Processing
will pause, the FAU is accessed, and the appropriate screens that will allow you to
correct the problem are displayed.

– When the program name on the test screen does not match the EXEC PGM in
the JCL, an error message is displayed and the FAU is automatically accessed.

3. Automatic Task Library/Parm setup as follows:

– If the program name that follows the PGM= keyword of one of the steps is equal
to the module name to be tested, then XPEDITER/TSO will dynamically allocate
the DDs contained in that step. If the JCL PROC expansion option CONVERT is
being used, then the STEPLIB or JOBLIB datasets will be concatenated to
XPEDITER’s Task Library after the libraries that are specified on the Setup.1
screen.

– If none of the program names that follow the PGM= keyword of one of the steps
is equal to the module name to be tested, then XPEDITER/TSO copies the JCL to
the File Allocation Utility work area, prompts for DD selection, and dynamically
allocates the selected files. If the JCL PROC expansion option CONVERT is being
used, a STEP (as opposed to DDs) must be selected in order to have the
corresponding STEPLIB or JOBLIB datasets concatenated to XPEDITER’s Task
Library after the libraries that are specified on the Setup.1 screen.

– If the JCL PROC expansion option CONVERT is being used, and the step you are
testing has the PARM= keyword, XPEDITER/TSO will use the JCL-supplied parm
values (as long as the PARM String field on the screen is blank). To override the
use of the JCL-supplied PARM, put two single quotes in the PARM String field to
pass a null parameter or supply parm values in the PARM String field.

If no errors occur, the files for the debugging session are automatically allocated. If a
problem occurs, the FAU is automatically accessed, and you are presented with the
screens needed to correct the problem.

4-20 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Allocating With the ALLOCATE Command

The ALLOCATE command is generally used to allocate files from within an XPEDITER
test session. It can be entered on the command line of any XPEDITER screen. If entered
without a dataset name, the FAU is accessed and you can specify the information about
the file to be allocated. When you exit the FAU, the files are automatically allocated.

If you enter the ALLOCATE command with a dataset name, the dataset is automatically
accessed. If the dataset contains a file list and the allocations are successful, you will not
see any FAU facilities.

If the dataset contains JCL, the FAU is accessed and the JCL dataset is displayed on the
Select DDNAME screen. On this screen, you can select the DD statements to be copied to
the file list. Refer to “Converting JCL to a File List” on page A-14.

If an error occurs during the allocation, the Edit File List screen is displayed with an error
message. At this time, you can correct the problem. When you enter END, the files are
allocated.

Usage Note

Even if your application programs would normally find any required Language
dependent run-time subroutines (including LE - Language Environment) without being
included in the JOBLIB/STEPLIB of the batch JCL (usually from the LINKLIST or (E)LPA),
the libraries must still be specified as part of the test session setup. This will ensure that
XPEDITER’s Task Library will be properly configured.

Using XPEDITER/TSO Commands in Interactive Mode

In interactive mode, debugging is performed by entering XPEDITER/TSO commands
online.

You can also use script files in interactive mode.

• An initial script member name can be specified in the Initial Script field on the
selected environment test screen.

• A test script member name can be specified by using the INCLUDE command on the
command line during the test session.

• A post script member name can be specified in the Post Script field on the selected
environment test screen.

• An abend script is not applicable in interactive mode.

For information about using scripts, refer to “Test Session Management Using Scripts” on
page 4-48.

Starting a Batch Connect Session
With the Batch Connect facility, you can submit your execution JCL in batch and
connect directly to the job as it executes in its native environment, the MVS batch
initiator.

Notes:

1. In Batch Connect mode, you do not have to allocate the files and databases required
for your program to run. They are automatically allocated to the batch address space
via the DD statements in the JCL.

2. No change in the TSO logon size is required for large programs.

Getting Started 4-21
3. Batch Connect is also available for the ROSCOE environment. Refer to “Batch
Connect Under ROSCOE” on page 4-30.

4. The Batch Connect facility does not use ISPF services.

5. The CICS interface to DLI driver (DFHDRP) is not supported in Batch Connect.

The Batch Connect facility presents several screens that are used to automate the process
of starting the session. The following summarizes the process:

1. Access the facility: Type option 3 (BATCH) on the XPEDITER/TSO Primary Menu to
access the Batch Connect facility. The Process Execute JCL screen is displayed.

2. Process the execution JCL: The Process Execute JCL screen is used to identify the
execution JCL for the debugging session. You can also access the ISPF editor to view
and make changes to the JCL.

The JCL statements are scanned, expanded if the JCL is a procedure, and the job steps
are extracted. A list of the job steps is then displayed on the Select Job Step screen.

Note: As part of the process to retrieve the job steps of the expanded procedure,
XPEDITER inserts a /*ROUTE PRINT LOCAL card into a JCL job stream. The
option to “insert” or “not insert” the card is controlled by the CTLROUTE
option in the JCLRA093 member. Refer to the XPEDITER/TSO and
XPEDITER/IMS Installation Guide Appendix entitled “Optional Postinstallation
Procedures” for more information.

3. Convert and submit the JCL: The Select Job Step screen is used to specify how you
want each job step to execute (in interactive or unattended mode). When a job step
is selected for interactive debugging, the source for that step is displayed at your
terminal. When a step is selected to run in unattended mode, you cannot interact
with the step from your terminal. If you want to debug the step, XPEDITER
debugging commands must be read from a test script and the output results from the
test session are written to the log.

You can submit the job from this screen or you can edit the JCL. When you submit
the job, the Batch Connect intelligent scanner automatically converts each step to
execute in the specified mode (interactive or unattended). Refer to “JCL Conversion”
on page 4-28 for information about JCL conversion.

4. Connect to the job: If you submit the job with the RUN command, you are
automatically connected to the job steps that were specified to execute in interactive
mode. If you submit the job with the SUBMIT command, you must use the
CONNECT or STATUS command to connect your terminal to the job steps selected
for interactive debugging.

5. Edit the JCL: Optionally, you can access the edit facility from the Process Execute
JCL or Select Job Step screen to view and confirm the JCL conversion or to make
changes to the JCL.

6. Access the Setup Facility: Optionally, you can use the SETUP command on the
Process Execute JCL screen or the Select Job Step screen to access the Setup Menu.
From the Setup Menu, you can view and change your job card information and
change the installed defaults, such as the load libraries, DDIO dataset, and so on.
Refer to Appendix C, “Specifying Setup Options” for a description of the setup
screens.

Processing the JCL

The Process Execute JCL screen shown in Figure 4-13 on page 4-22 is used to specify the
name of the JCL to be used for the debugging session and to specify what you want to do
with the JCL.

4-22 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 4-13. Process Execute JCL Screen

There are two things you need to do on this screen:

1. Enter the name of the dataset containing your execution JCL either in the ISPF
Library field or in the Other Partitioned or Sequential Dataset field.

2. Use one of the following commands on the command line:

blank

Leave the command line blank to scan the specified JCL and extract the job step
information. If the JCL is a procedure, it is expanded prior to scanning. A
progress message is displayed during processing. When processing is complete,
the Select Job Step screen shown in Figure 4-14 on page 4-23 is displayed.

Browse

Invokes the ISPF browse facility and displays the specified JCL.

Edit

Invokes the ISPF edit facility and displays the specified JCL. You can edit the JCL.
Refer to “Editing the JCL” on page 4-26 for more information.

SEtup

Accesses the Test Setup Menu from which you can access the job card
information needed to process JCL PROCs. Refer to Appendix C, “Specifying
Setup Options” for more information.

STatus

Displays the status of any submitted job(s). You can connect to a job from the
Status screen.

Converting and Submitting the JCL

When JCL processing is completed, the job steps in the specified JCL are displayed on the
Select Job Step screen shown in Figure 4-14.

---------------------- XPEDITER/TSO - PROCESS EXECUTE JCL ---------------------
COMMAND ===>

Primary Commands: blank (Process JCL) Browse Edit SEtup STatus

ISPF Library:
 Project ===> XT
 Group ===> BATCON ===> ===> ===>
 Type ===> JCL
 Member ===> BATCH (Blank for member selection list)

Other Partitioned or Sequential Dataset:
 Dataset Name ===>
 Volume Serial ===> (If not cataloged)

 Press ENTER to process or enter END command to terminate

Getting Started 4-23
Figure 4-14. Select Job Step Screen

This screen is used two ways:

1. Use the I, IC, U, or UC line command to specify how you want each job step to
execute: in interactive or unattended mode. The JCL will be converted to run with
XPEDITER/TSO in the specified execution mode. Refer to “JCL Conversion” on page
4-28 for information about JCL conversion.

2. Use the RUN or SUBMIT primary command to convert and submit the JCL, the EDIT
command to view or edit the JCL, the SETUP command to access and change your
job card information, the STATUS command to display the status of submitted jobs,
or the END command to exit.

For example, a completed Select Job Step screen is shown in Figure 4-15.

Figure 4-15. Completed Select Job Step Screen

 ----------------------- XPEDITER/TSO - SELECT JOB STEP ---- Row 1 to 9 of 20
 COMMAND ===> SCROLL ===> CSR

 Line Commands: Primary Commands:
 I - Interactive testing Edit - Display converted selected steps
 U - Unattended testing END - Exit without processing
 IC - Interactive Code Coverage RUN - Submit and connect
 UC - Unattended Code Coverage SEtup - Setup work datasets
 SUBmit - Convert selected steps and submit
 blank - Reset I/U/C STatus - Display status of submitted job(s)

 Dataset: 'PFHABC0.BATCON.JCL'

 PROGRAM INITSCR POSTSCR STEPNAME PROCNAME PROCSTEP EXEC PGM
 ----------------------------------- ---
 __ GENLABEL ________ ________ XMULTI MULTI STEP1 XPTSO
 __ SORTMSTR ________ ________ XMULTI MULTI STEP2
 __ PRINTCHK ________ ________ XMULTI MULTI STEP3 XPTSO
 __ IDCAMS ________ ________ XMULTI MULTI STEP4
 __ TRIIMSM ________ ________ XMULTI MULTI BATCHDLI
 __ TRIBMP ________ ________ XMULTI MULTI BATCHIMS XPBATCH
 __ DSNMTV01 ________ ________ XMULTI MULTI DB2DLI
 __ PQ1CPINQ ________ ________ XMULTI MULTI CICSDLI
 __ XPTSO ________ ________ XMULTI MULTI XBATCONI

 ----------------------- XPEDITER/TSO - SELECT JOB STEP ---- Row 1 to 9 of 20
 COMMAND ===> SCROLL ===> CSR

 Line Commands: Primary Commands:
 I - Interactive testing Edit - Display converted selected steps
 U - Unattended testing END - Exit without processing
 IC - Interactive Code Coverage RUN - Submit and connect
 UC - Unattended Code Coverage SEtup - Setup work datasets
 SUBmit - Convert selected steps and submit
 blank - Reset I/U/C STatus - Display status of submitted job(s)

 Dataset: 'PFHABC0.BATCON.JCL'

 PROGRAM INITSCR POSTSCR STEPNAME PROCNAME PROCSTEP EXEC PGM
 ----------------------------------- ---
 I_ GENLABEL ________ ________ XMULTI MULTI STEP1 XPTSO
 __ SORTMSTR ________ ________ XMULTI MULTI STEP2
 I_ PRINTCHK ________ ________ XMULTI MULTI STEP3 XPTSO
 __ IDCAMS ________ ________ XMULTI MULTI STEP4
 __ TRIIMSM ________ ________ XMULTI MULTI BATCHDLI
 __ TRIBMP ________ ________ XMULTI MULTI BATCHIMS XPBATCH
 __ DSNMTV01 ________ ________ XMULTI MULTI DB2DLI
 __ PQ1CPINQ ________ ________ XMULTI MULTI CICSDLI
 __ XPTSO ________ ________ XMULTI MULTI XBATCONI

4-24 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Line Commands
I (Interactive) testing

Selects the step to run in interactive mode.

U (Unattended) testing

Selects the step to run in unattended mode.

IC (Interactive Code Coverage) testing

Selects the step to run in interactive mode (with Code Coverage active).

UC (Unattended Code Coverage) testing

Selects the step to run in unattended mode (with Code Coverage active).

blank (Reset I/U/C)

Blank the line command area and press Enter to remove an I, IC, U, or UC line
command set on a job step.

Notes:

1. For a step that is already converted (EXEC PGM=XPTSO or EXEC PGM=XPBATCH), a
question mark (?) is displayed and the step is not selectable.

2. If a job step cannot be resolved during JCL processing, the program name will be
preceded by a question mark (?) and the I, IC, U, or UC line command cannot be
used. Refer to “JCL Conversion” on page 4-28 for additional information.

Primary Commands
Edit

Accesses the ISPF edit facility. The JCL is automatically converted and displayed on
the ISPF edit screen. You can view and confirm the JCL conversion and make
additional modifications to the converted JCL. However, the changes made to the
converted JCL will not be saved when you CANCEL or PF3 (END) from the edit
screen. Refer to “Editing the JCL” on page 4-26 for more information and an example
of the ISPF edit screen.

You can submit the JCL from the edit screen using the RUN or SUBMIT command.

END

Exits without converting the JCL, saving any modifications, or submitting the job,
and returns you to the Process JCL screen.

RUN

Converts the steps selected by the I and U line commands to XPEDITER/TSO steps
and submits the JCL. When the job processes successfully, you are automatically
connected to the job steps selected to run in interactive mode and the Source screen
is displayed.

If the job is a long-running job, the Connect Status screen is displayed showing the
job status.

Note: The terminal cannot be used while the job is running.

If the JCL is already converted, the RUN command (with a DSNAME) can be entered
on any screen except an XPEDITER test session screen. See the XPEDITER/TSO and
XPEDITER/IMS Reference Manual for more information about the RUN command.

SEtup

Displays the Setup Menu from which you can select to view and change the job card
and library information, such as the DDIO file (XPSL000n) and the SCRIPT file

Getting Started 4-25
(XINCLUDE). Refer to Appendix C, “Specifying Setup Options” for more
information.

SUBmit

Converts the steps selected by the I, IC, U, and UC commands to XPEDITER/TSO
steps and submits the job. A job submitted with the SUBMIT command is not
automatically connected. To connect to a job submitted with the SUBMIT command,
you must use the CONNECT or STATUS command. Refer to “Connecting to a Job” on
page 4-25.

Note: While the job is running, you can continue using your terminal.

STatus

Displays the status of a job. You can connect to the job directly from the Status
screen.

The fields displayed on the Select Job Step screen are:

Dataset

This field is pre-filled with the dataset name of the JCL being processed.

PROGRAM

The name of the program to be tested. The program name does not necessarily match
the EXEC PGM name.

INITSCR

The member name of the script in the INCLUDE library specified on the Setup panel.
The INITSCR field can be typed over to specify a test script member which can be
processed at the beginning of a debugging session.

POSTSCR

The member name of the script in the INCLUDE library specified on the Setup panel.
The POSTSCR field can be typed over to specify a test script member which can be
processed at the end of a debugging session.

STEPNAME

The job step name.

PROCNAME

The in-stream or cataloged procedure name.

PROCSTEP

The step name within the called procedure.

EXEC PGM

The name of the EXEC program that is executed for the step. XPTSO if I (Interactive)
or IC (Interactive Code Coverage) was specified for the step. XPBATCH if U
(Unattended) or UC (Unattended Code Coverage) was selected for the step. The field
is left blank if the name is the same as the one entered in the PROGRAM field.

Connecting to a Job

When you use the RUN command to submit the job, the steps that are selected for
interactive debugging are automatically displayed at your terminal.

When you use the SUBMIT command to submit the job, there are two ways to connect to
a job: the CONNECT command and the STATUS command.

4-26 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
CONNECT Command

Use the CONNECT command on any screen (except the source display) to connect a
VTAM terminal to a job submitted through XPEDITER/TSO’s Batch Connect facility. You
can connect to a job with multiple steps or to a single step job. For information on the
CONNECT command syntax, refer to the XPEDITER/TSO and XPEDITER/IMS Reference
Manual.

STATUS command

The STATUS command is used to display the Status screen containing a list of the jobs in
the system. The STATUS command can be entered from any screen.

The ATTACH line command on the Status screen is used to connect to a job and display
the source of each job step for which the I (Interactive) command was specified. A
message is displayed notifying you that the job step selected for testing is executing.

Connection Security Check

Connection can be made to any job, including production jobs, as long as your site
security grants the authority. The Batch Connect facility is shipped with a default
security exit routine that allows connection to a job if the JOBNAME, without the last
character, matches the TSO ID where the STATUS panel is accessed. When a connection
cannot be made, the messages CANNOT CONNECT... or SECURITY CHECK FAILED...
are issued.

The site installer can customize the security exit routine to tailor the security level for
certain groups or individuals. When an asterisk (*) is entered in the JOBNAME field on
the Status screen, all jobs that are waiting for connection or being tested under Batch
Connect are listed. System programmers are able to connect to a remote job and use the
facility as a help desk feature in debugging application programs.

Editing the JCL

There are two points at which the Batch Connect facility lets you edit your JCL.

1. Primary editing is available by entering the EDIT primary command on the Process
Execute JCL screen. An ISPF edit session is invoked and the specified JCL is displayed.
If your site security permits, changes will be saved to the original JCL when the edit
session ends.

2. Secondary editing is available by entering the EDIT primary command on the Select
Job Step screen. An ISPF edit session is invoked and a temporary copy of the JCL is
displayed. JCL statements for the steps selected for testing, using the I (Interactive) or
U (Unattended) line commands, are already converted when the edit screen is
displayed.

Note: If you have selected a step that uses the IMS batch region controller program,
the XPEDITER/TSO TEST command will display ???????? as the program
name. It is not necessary to replace the question marks with the name of the
program you want to debug. When the job is submitted, XPEDITER/TSO will
use the step’s PARM information to determine the name of the program.

After editing is complete, you can submit the job from this screen with the RUN or
SUBMIT command.

Note: Entering END (PF3) or CANCEL returns to the Select Job Step screen without
saving the changes. To save the converted JCL, use the ISPF CREATE
command and copy the contents to a dataset. The saved JCL can be
submitted at any time with the RUN or SUBMIT command.

Getting Started 4-27
Figure 4-16 on page 4-27 is an example of the Edit screen. In this example, Step 1 is
converted to run in interactive mode since the I line command was entered next to the
job step on the Select Job Step screen.

Figure 4-16. Edit Screen

Disconnecting the Terminal

Enter the DISC primary command from the Source display screen to disconnect the
VTAM terminal from the batch job and return to the Status screen in TSO. The job can be
reconnected by entering the A line command. A disconnect can also be accomplished by
pressing the attention key twice.

General Information About Batch Connect

Testing Multiple Job Steps

The Batch Connect facility makes system testing easier for multiple step jobs by
providing the capability of intercepting running batch applications and starting
interactive debugging sessions. To understand how the facility works, consider the
environment in which batch applications are executed.

Batch applications are processed by submitting jobs through JCL statements. A job can be
simple or complex. It can consist of a single step or multiple steps that call in-stream and
cataloged procedures. An example of a multiple step job is one that creates input control
cards in the first step, processes the transaction file in the second step, and updates the
master file in the third step.

In XPEDITER/TSO interactive mode, to debug a specific step in a job with multiple steps
may require that you unit test the step by creating the necessary files and establishing
the appropriate conditions to simulate that the previous steps were executed. You may
also have to write a driver or stub routine to simulate the logic state that was set prior to
reaching the step you want to test. This requires extensive planning and setup before
debugging can begin.

Using the Batch Connect facility, you do not need to prepare a unit testing environment.
When a job is submitted, steps that are selected for unattended testing execute normally.
When a step is selected for interactive testing, XPEDITER/TSO gains control and connects
the batch address space to a VTAM terminal. In effect, you are presented with an online
debugging session that reads commands from and writes results to the screen while the
program is actually executing in the batch region.

EDIT ---- SYS92189.T124302.RA000.PFHABC0.RA0000018 ------------ COLUMN 001 072
COMMAND ===> SCROLL ===> PAGE
JCL HAS BEEN MODIFIED TO DEBUG WITH XPEDITER.
==MSG> *===*
==MSG> * COMMANDS: *
==MSG> * SUB - SUBMIT THIS JOB *
==MSG> * RUN - SUBMIT THIS JOB AND CONNECT *
==MSG> * END - RETURN TO PREVIOUS PANEL *
==MSG> *===*
000001 //ASJRNS1Z JOB (ASJRNS1, 298),'MULTISTEP',MSGLEVEL=(1,1),
000002 // MSGCLASS=X,NOTIFY=ASJRNS1,TIME=(,30),GROUP=$$PP
000004 //**//
000006 // STEP 1 - PRINT LABELS IN THE 3-UP FORMAT *//
000008 //**//
000009 //*
000011 //STEP1 EXEC PGM=XPTSO,REGION=512K,
000012 // PARM='ATLCTLMTNPAC'
000013 //*
000014 //XDYNAMIC DD DISP=(NEW,DELETE),SPACE(TRK,(10,10,10)),
000015 // DCB=(RECFM=U,BLKSIZE=18432),UNIT=SYSDA
000016 //STEPLIB DD DIS=(OLD,DELETE),DSN=*.XDYNAMIC,VOL=REF=*.DYNAMIC
000017 // DD AXPTSO.XPPROD70.CUSTLOAD,DIS=SHR

4-28 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
XPEDITER/TSO releases control when you resume execution by entering the GO
command from the last logical statement in the program. Execution is passed to
subsequent steps until an end-of-job is encountered.

JCL Conversion

Job steps marked with the I, IC, U, or UC line command on the Select Job Step screen are
changed to XPEDITER/TSO steps in the JCL and generated to a temporary file. JCL
conversion is as follows:

• XPEDITER/TSO work file DDs (XPSL000n, XPIN, XDYNAMIC, XINCLUDE,
XOPTIONS, XPOUT, XPSHOW, XPHELP, XPDOC, and XPSCRIPT) are inserted.

• If a STEPLIB exists in the user’s JCL, the following concatenations are generated:

– XDYNAMIC
– Application load libraries specified on the SETUP screen
– Libraries specified on the Base Products screen
– Product-specific libraries

• XPEDITER/TSO
• CSS
• Code Coverage (if installed)

– User load libraries from the JCL’s STEPLIB

If a STEPLIB does not exist in the user’s JCL, a STEPLIB is generated with the
following concatenations:

– XDYNAMIC
– Application load libraries specified on the SETUP screen
– Libraries specified on the Base Products screen
– Product-specific libraries

• XPEDITER/TSO
• CSS
• Code Coverage (if installed)

– JOBLIB libraries, if applicable

XPEDITER/TSO looks in the STEPLIB when attempting to intercept a program for
debugging and analyis.

• EXEC PGM= is updated as follows to point to the appropriate XPEDITER/TSO module
name.

– EXEC PGM=XPTSO (for interactive mode)
– EXEC PGM=XPBATCH (for unattended mode).

• XPIN control cards are built. The control cards tell XPEDITER what environment and
program to test.

If the JCL scanner did not parse the program name to be tested under XPEDITER, a
question mark (?) is displayed in the column preceding the step on the Select Job Step
screen. In this case, the I or U line command is not accepted and no conversion is made
to allow interactive or unattended mode testing. Press the PF1 key for an explanation.
Following is a list of reasons why a step is not selectable:

1. Step executes XPEDITER unattended batch

This step executes PGM=XPBATCH, the XPEDITER unattended batch program. A
probable cause could be attempting to convert JCL that has already been modified to
run XPEDITER unattended batch.

2. Step executes XPEDITER interactive batch

This step executes PGM=XPTSO, the XPEDITER interactive batch program. A
probable cause could be attempting to convert JCL that has already been modified to
run XPEDITER interactive batch.

3. PROC not found

Getting Started 4-29
The procedure cannot be found. A JCL error can occur if you submit this job.

4. Stepname on an EXEC statement within a PROC must not be a blank

Unless it is the first step in a procedure, there must be a step name on the EXEC
statement for a procedure step to be selected. Code a step name on the EXEC
statement in the procedure definition and try again.

5. No space in EXEC card for PGM substitution

The EXEC card did not have enough free space on it to allow conversion. Try
splitting it into more than one card.

6. PGM=DFHDRP is not supported

This step executes PGM=DFHDRP, the CICS batch interface to DLI driver. JCL that
uses the batch interface to DLI cannot be converted.

7. PGM=BTSRC000 is not supported

This step executes PGM=BTSRC000, the IMS Batch Terminal Simulator (BTS). JCL that
uses BTS cannot be converted.

Note: You can access the editor and manually convert JCL that uses BTS by
following the instructions in “Editing the JCL” on page 4-26.

Using XPEDITER/TSO Commands in Batch Connect Mode

Interactive Debugging

When you use the I (Interactive) line command to select a job step for interactive
debugging, all XPEDITER/TSO COBOL commands except the following can be used
during the debugging session:

ALLOC
FADB2
SET PFnn

You can also use script files in interactive mode.

• An initial script member name can be specified in the INITSCR field on the Select Job
Step screen or you can edit your execution JCL and use the INITSCR parameter on the
TEST or INTERCEPT command.

• A test script member name can be specified by using the INCLUDE command on the
command line during the test session.

• A post script member name can be specified in the POSTSCR field on the Select Job
Step screen, or you can edit your execution JCL and use the POSTSCR parameter on
the TEST or INTERCEPT command.

• An abend script is not applicable in interactive mode.

For information about using commands in script files, refer to “Test Session Management
Using Scripts” on page 4-48.

Unattended Debugging

When you use the U (Unattended) line command to select a job step for unattended
testing, XPEDITER/TSO must read the predefined commands from a script file and write
the results to the log file.

• An initial script member name can be specified in the INITSCR field on the Select Job
Step screen, or you can edit your execution JCL and use the INITSCR parameter on
the TEST or INTERCEPT command.

• A test script member name can be specified by using the INCLUDE command in the
job stream.

4-30 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
• A post script member name can be specified by editing your execution JCL and using
the POSTSCR parameter on the TEST or INTERCEPT command.

• An abend script member name can be specified with the SET ABENDSCR command in
the job stream.

For information about using scripts, refer to “Test Session Management Using Scripts” on
page 4-48.

Intercepting Abends in Batch Connect Mode

Abend processing in a Batch Connect interactive session behaves the same as an
XPEDITER/TSO interactive session. When an abend occurs, a message is displayed at the
top of the screen informing you that you can use the AA SNAP command (if you have
Abend-AID Release 7.0.2 or above installed at your site) or the LOG command to view
information about the abend. Refer to Chapter 6, “Handling Run-Time Errors”.

In an unattended debugging session, the SET ABENDSCR command can be used in the
job stream to specify the member containing the commands to be executed when an
abend occurs. For example, in the following SET ABENDSCR command,

SET ABENDSCR TRIMABN1

TRIMABN1 is a member of a partitioned dataset allocated to the XINCLUDE DD.

The commands specified in an abend script are executed following the abend. This allows
you to specify unique abend scripts containing special commands to be executed at
different points in your code if an abend occurs.

For information about using abend scripts, refer to “Test Session Management Using
Scripts” on page 4-48.

In an interactive or unattended session, the following information is written to the log
when an abend occurs:

• Normal abend output
• Source line where the abend occurred
• A display for each field referenced in the source line where the abend occurred.

Usage Note

Even if your application programs would normally find any required Language
dependent run-time subroutines (including LE - Language Environment) without being
included in the JOBLIB/STEPLIB of the batch JCL (usually from the LINKLIST or (E)LPA),
the libraries must still be specified as part of the test session setup. This will ensure that
XPEDITER’s Task Library will be properly configured. For Batch Connect, the preferred
method is to include the run-time libraries in the STEPLIB DD statement concatenations
of the JCL step(s) that are being intercepted.

Batch Connect Under ROSCOE

Starting A ROSCOE Batch Connect Session

With the Batch Connect facility, you can submit your execution JCL in batch and
connect directly to the job as it executes in its native environment, the MVS batch
initiator.

Notes:

1. In Batch Connect mode, you do not have to allocate the files and databases required
for your program to run. They are automatically allocated to the batch address space
via the DD statements in the JCL.

Getting Started 4-31
2. The size of programs which can be tested will not be limited by the size of the
ROSCOE region.

3. The Batch Connect facility does not utilize ISPF services.

4. Batch Connect does not support nested procedures.

5. The CICS interface to DLI driver (DFHDRP) is not supported in Batch Connect.

The Batch Connect facility presents several screens that are used to automate the process
of starting the session. The following summarizes the process:

1. Access the Facility: From the ROSCOE command line enter the command
XBATCON. The Process Execute JCL screen is displayed.

2. Process the execution JCL: The Process Execute JCL screen is used to identify the
execution JCL for the debugging session. You can also use ROSCOE services to view
and make changes to the JCL. The JCL statements are scanned, expanded if the JCL is
a procedure, and the job steps are extracted. A list of the job steps is then displayed
on the Select Job Step screen.

3. Convert and submit the JCL: The Select Job Step screen is used to specify how you
want each job step to execute (in interactive or unattended mode). When a job step
is selected for interactive debugging, the source for that step is displayed at your
terminal. When a step is selected to run in unattended mode, you cannot interact
with the step from your terminal. If you want to debug the step, XPEDITER
debugging commands must be read from a test script and the output results from the
test session are written to the log file. You can submit the job from this screen or you
can edit the JCL. When you submit the job, the Batch Connect intelligent scanner
automatically converts each step to execute in the specified mode (interactive or
unattended).

4. Connect to the job: If you submit the job with the PROCESS command, your job is
submitted and you are taken directly to the STATUS screen with your job being
displayed. If you use the SUBMIT command, you must use the STATUS command to
connect your terminal to the job steps selected for interactive debugging.

5. Edit the JCL: Optionally, you can access the edit facility from the Process Execute
JCL or Select Job Step screen to view and confirm the JCL conversion or to make
changes to the JCL.

6. Access the Setup Facility: Optionally, you can use the SETUP command on the
Process Execute JCL screen or the Select Job Step screen to access the Setup Menu.
From the Setup Menu you can view and change the installed defaults such as the load
libraries, DDIO dataset, etc.

Processing The JCL

The Process Execute JCL screen shown below in Figure 4-17 is used to specify the name of
the JCL to be used for the debugging session and to specify what you want to do with the
JCL.

4-32 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 4-17. Process Execute JCL for Batch Connect Under ROSCOE

There are two things you need to do on this screen:

1. Enter the name of the dataset or ROSCOE member that contains the execution JCL
for the program(s) you wish to debug. ROSCOE library members are entered in the
top half of the panel and O/S datasets are entered in the bottom half. If a ROSCOE
user prefix is entered with a period (ABC.), a ROSCOE library selection list will be
shown. If an O/S PDS dataset is entered without a member name, a PDS selection list
will be displayed. Pressing the PF4 key will switch between ROSCOE and O/S
resources.

2. Use one of the following commands on the command line:

BLANK

Leave the command line blank to scan the specified JCL and extract the job step
information. If the JCL is a procedure, it is expanded prior to scanning.

BROWSE

Invokes a controlled ROSCOE browse facility and displays the specified JCL.

EDIT

Invokes a controlled ROSCOE edit facility and displays the specified JCL. You can
edit the JCL.

SETUP

Accesses the Test Setup Menu which will allow you to specify XPEDITER and user
libraries that are to be used.

STATUS

Displays the status of any submitted job(s). You can connect to a job from the
Status screen.

------------------------XPEDITER/ROS - PROCESS EXECUTE JCL -----------------
 Copyright (c) 1998 by Compuware Corporation. All rights reserved.
 COMMAND ===>

 PRIMARY COMMANDS: blank - process JCL Browse Edit SEtup STatus

 ENTER/VERIFY THE ROSCOE JCL FILE TO BE PROCESSED:

 MEMBER NAME ===> WWH.QBATJC2F Prefix(.) for Member List

 DESCRIPTION:

==

 DATA SET NAME ===>
 If PDS is entered with no member name
 a selection list will be displayed

 VOLUME ===> If not cataloged

 PRESS ENTER TO PROCESS, END TO TERMINATE, OR, PF4 TO SWITCH BETWEEN ROSCOE
 MEMBERS AND O/S DATASETS

Getting Started 4-33
Member Selection List Processing

Figure 4-18. Process JCL Screen for Batch Connect Under ROSCOE

This panel (Figure 4-18) is displayed if a ROSCOE prefix was entered in the previous panel
(E.G. WW2.) or if a PDS dataset was entered without a member that had previously been
specified.

One of the following actions must be taken:

1. Select a member for processing by typing an S in front of it.
2. Select a member to Browse by typing a B in front of it.
3. Select a member to Edit by typing an E in front of it.
4. Return to the previous panel by pressing the PF3/PF15 keys.

In addition, the selection list can be searched by using the LOC primary command
followed by the search argument. The command LOC JCL will reposition the display to
start with the first line that contains the string JCL. Pressing the PF5 key will repeat the
LOC command.

Establishing The Batch Connect Environment

The Setup Menu Screen for Batch Connect under ROSCOE is shown below in Figure 4-19.
The SEtup panels allow the user to customize the Batch Connect environment.
Additional STEPLIB datasets can be specified and the XPEDITER required datasets can be
customized. As part of the XPEDITER install, system defaults will be initialized for each
of these catagories. Each user can further customize the environment using this setup
facility. Except for the Log and Script files, selecting the desired option will display a
screen that allows modification to both user overrides and the system defaults (for the
specific user only). The PROCLIBS option allows the user to specify an additional dataset
that XPEDITER should use in resolving procedures.

 ------------------------XPEDITER/ROS - PROCESS EXECUTE JCL -----------------
 COMMAND ===> SCROLL ====> CSR

 LINE COMMANDS: S (Select Member) PRIMARY COMMANDS: END (Return to Process
 E (Edit Member) PF5/17=Repeat LOC LOC (Locate next String
 B (Browse Member)

 MEMBER NAME DESCRIPTION UPDATE ACCESS RECS ATTR

 WW2.$DPTNX Curr-dev ptns for reports 10/08/1996 68 SHR
 WW2.$DPTNXA Arch-dev ptns for reports 03/02/1995 03/02/1995 65 SHR
 WW2.$DPTNXB Bkup-dev ptns for reports 03/02/1995 03/02/1995 63 SHR
 WW2.$DPTNXO Old -dev ptns for reports 03/02/1995 03/02/1995 62 SHR
 WW2.$DPTNXR Rcvr-dev ptns for reports 03/02/1995 03/02/1995 70 SHR
 WW2.$EPTNX 01/25/1995 07/23/1996 22 SHR
 WW2.$EPTNX2 02/10/1995 03/02/1995 25 SHR
 WW2.$FPTNX 01/24/1995 07/24/1996 11 SHR
 WW2.$PFKS$ 12/16/1994 11/11/1996 45 SHR
 WW2.$PFKSUB$ 12/16/1994 11/11/1996 98 SHR
 WW2.$PTNX1 01/25/1995 04/03/1995 10 SHR
 WW2.$PTNX2 03/02/1995 10 SHR
 WW2.$T921215 TIMESHEET DATA 08/22/1994 08/22/1994 155 SHR
 WW2.$T931215 TIMESHEET DATA 08/22/1994 08/22/1994 155 SHR
 WW2.$T940215 TIMESHEET DATA 08/22/1994 08/22/1994 155 SHR

4-34 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 4-19. Setup Menu Screen for Batch Connect Under ROSCOE

Converting and Submitting the JCL

When JCL processing is completed, the job steps in the specified JCL are displayed on the
Select Job Step screen as shown in Figure 4-20 on page 4-34:

Figure 4-20. Select Job Step Screen for Batch Connect Under ROSCOE

This screen is used two ways:

1. Use the I, U, IC, or UC line commands to specify how you want each job step to
execute, in interactive or unattended mode. The JCL will be converted to run with
Batch Connect under ROSCOE in the specified execution mode.

2. Use the PROcess or SUBmit primary command to convert and submit the JCL, the
EDIT command to view or edit the JCL, the SETUP command to access and change
Batch Connect under ROSCOE Batch Connect environment, the STATUS command
to display the status of submitted jobs, or the END command to exit.

 ---------------- XPEDITER/ROS - SETUP MENU ----------------
 OPTION ===>

 1 LOADLIBS - Application load module libraries
 2 DDIO - DDIO files
 3 INCLUDES - Test script libraries
 4 PROCLIBS - Proclibs to search to expand procedures
 5 LOG - Session log dataset disposition
 6 SCRIPT - Test script dataset disposition

 A ALL - Display all of the above in succession (except 0)

 Press ENTER to process or enter END command to terminate

 ----------------------- XPEDITER/ROS - SELECT JOB STEP ---- Row 1 to 9 of 20
 COMMAND ===> SCROLL ===> CSR

 Line Commands: Primary Commands:
 I - Interactive testing Edit - Display converted selected steps
 U - Unattended testing END - Exit without processing
 IC - Interactive Code Coverage RUN - Submit and connect
 UC - Unattended Code Coverage SEtup - Setup work datasets
 SUBmit - Convert selected steps and submit
 blank - Reset I/U/C STatus - Display status of submitted job(s)

 Dataset: 'PFHABC0.BATCON.JCL'

 PROGRAM INITSCR STEPNAME PROCNAME PROCSTEP EXEC PGM
 ------------------------- --
 __ GENLABEL ________ XMULTI MULTI STEP1 XPTSO
 __ SORTMSTR ________ XMULT1 MULT1 STEP2
 __ PRINTCHK ________ XMULT1 MULT1 STEP3 XPTSO
 __ IDCAMS ________ XMULT1 MULT1 STEP4
 __ TRIIMSM ________ XMULT1 MULT1 BATCHDLI
 __ TRIBMP ________ XMULT1 MULT1 BATCHIMS XPBATCH
 __ DSNMTV01 ________ XMULT1 MULT1 DB2DLI
 __ PQ1CPINQ ________ XMULT1 MULT1 CICSDLI
 __ XPTSO ________ XMULT1 MULT1 XBATCONI

Getting Started 4-35
For example, a completed screen is shown below in Figure 4-21:

Figure 4-21. Completed Select Job Step Screen for Batch Connect Under ROSCOE

Line Commands
I (INTERACTIVE)

Selects the step to run in interactive mode.

U (UNATTENDED)

Selects the step to run in unattended mode.

IC (INTERACTIVE CODE COVERAGE)

Selects the step to run in interactive mode (with Code Coverage active).

UC (UNATTENDED CODE COVERAGE)

Selects the step to run in unattended mode (with Code Coverage active).

BLANK (RESET I/U/C)

Blank the line command area and press Enter to remove an I, I/C, U, or U/C line
command set on a job step.

Note: If a job step cannot be resolved during JCL processing, the program name will be
preceded by a question mark (?) and the I or U will be preceded by a question
mark (?).

Primary Commands
EDIT

Accesses a controlled RPF edit facility. The JCL is automatically converted and
displayed on the controlled RPF edit screen. You can view and confirm the JCL
conversion and make additional modifications to the converted JCL. However, the
changes made to the converted JCL will not be saved when you CANCEL or PF3
(END) from the edit screen.

You can submit the JCL from the edit screen using the SUBMIT command.

 ----------------------- XPEDITER/ROS - SELECT JOB STEP ---- Row 1 to 9 of 20
 COMMAND ===> SCROLL ===> CSR

 Line Commands: Primary Commands:
 I - Interactive testing Edit - Display converted selected steps
 U - Unattended testing END - Exit without processing
 IC - Interactive Code Coverage RUN - Submit and connect
 UC - Unattended Code Coverage SEtup - Setup work datasets
 SUBmit - Convert selected steps and submit
 blank - Reset I/U/C STatus - Display status of submitted job(s)

 Dataset: ’PFHABC0.BATCON.JCL’

 PROGRAM INITSCR STEPNAME PROCNAME PROCSTEP EXEC PGM
 ------------------------- --
 I GENLABEL ________ XMULTI MULTI STEP1 XPTSO
 _ SORTMSTR ________ XMULT1 MULT1 STEP2
 I PRINTCHK ________ XMULT1 MULT1 STEP3 XPTSO
 _ IDCAMS ________ XMULT1 MULT1 STEP4
 _ TRIIMSM ________ XMULT1 MULT1 BATCHDLI
 U TRIBMP ________ XMULT1 MULT1 BATCHIMS XPBATCH
 _ DSNMTV01 ________ XMULT1 MULT1 DB2DLI
 _ PQ1CPINQ ________ XMULT1 MULT1 CICSDLI
 _ XPTSO ________ XMULT1 MULT1 XBATCONI

4-36 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
END

Exits without converting the JCL, saving any modifications, or submitting the job
and returns you to the Process JCL screen.

PROCESS

Converts the steps selected by the I and U line commands to Batch Connect under
ROSCOE steps and submits the JCL. It then automatically displays the status screen
to allow monitoring the job’s process.

SETUP

Displays the Setup Menu from which you can select to view and change the job card
information and library information, such as the DDIO file (XPSL000n) and the
SCRIPT file (XINCLUDE).

SUBMIT

Converts the steps selected by the I, IC, U, and UC commands to Batch Connect
under ROSCOE steps and submits the job. A job submitted with the SUBMIT
command is not automatically connected. To connect to a job submitted with the
SUBMIT command, you must use the CONNECT or STATUS command.

Note: While the job is running, you can continue using your terminal.

STATUS

Displays the status of a job. You can connect to the job from the Status screen.

The fields on the Select Job Step screen are:

DATASET

This field is prefilled with the dataset name of the JCL being processed.

PROGRAM

The name of the program to be tested. The program name does not necessarily match
the EXEC PGM name.

INITSCR

The member name of the script in the INCLUDE library specified on the Setup panel.
The INITSCR field can be typed over to specify a test script member which can be
processed at the beginning of a debugging session.

STEPNAME

The job step name.

PROCNAME

The in-stream or cataloged procedure name.

PROCSTEP

The step name within the called procedure.

EXEC PGM

The name of the EXEC program that is executed for the step. XPTSO if I (Interactive)
or IC (Interactive Code Coverage) was specified for the step. XPBATCH if U
(Unattended) or UC (Unattended Code Coverage) was selected for the step. The field
is left blank if the name is the same as the one entered in the PROGRAM field.

Connecting To A Job

When you use the PROcess command to submit the job, the job is submitted and the
status screen is displayed.

Getting Started 4-37
When you use the SUBMIT command to submit the job, the STATUS command must then
be used to connect to the job.

The STATUS command is used to display the Status screen containing a list of the jobs in
the system.

The ATTACH line command on the Status screen is used to connect to a job and display
the source of each job step for which the I (Interactive) command was specified.

Although no message is generated when a job is ready to attach, it is safe to assume that
when a job is no longer using CPU time, that job is ready to attach.

Connection Security Check

Connection can be made to any job, including production jobs, as long as your site
security grants the authority. The Batch Connect facility is shipped with a default
security exit routine that allows connection to a job if the JOBNAME, without the last
character, matches the TSO ID where the STATUS panel is accessed. When a connection
cannot be made, the message CANNOT CONNECT... is issued.

The site installer can customize the security exit routine to tailor the security level for
certain groups or individuals.

Editing The JCL

There are two points at which the Batch Connect facility allows you to edit your JCL.

1. Primary editing is available by entering the EDIT primary command on the Process
Execute JCL screen. A controlled RPF edit facility session is invoked and the specified
JCL is displayed. If your site security permits, changes will be saved to the original
JCL when the edit session ends.

2. Secondary editing is available by entering the EDIT primary command on the Select
Job Step screen. A controlled RPF edit facility session is invoked and a temporary
copy of the JCL is displayed. JCL statements for the steps selected for testing, using
the I (Interactive) or U (Unattended) line commands, are already converted when the
edit screen is displayed.

After editing is complete, you can submit the job from this screen with the RUN or
SUBMIT command.

Note: Entering END (PF3) or CANCEL returns to the Select Job Step screen without
saving the changes. To save the converted JCL, use the normal ROSCOE SAVE,
UPDATE, or EXPORT commands. The saved JCL can be submitted at any time
with the SUBMIT command.

General Information About Batch Connect

Testing Multiple Job Steps

The Batch Connect facility makes system testing easier for multiple step jobs by
providing the capability of intercepting running batch applications and starting
interactive debugging sessions. To understand how the facility works, consider the
environment in which batch applications are executed.

Batch applications are processed by submitting jobs through JCL statements. A job can be
simple or complex. It can consist of a single step or multiple steps that call in-stream and
cataloged procedures. An example of a multiple step job is one that creates input control
cards in the first step, processes the transaction file in the second step, and updates the
master file in the third step.

In Batch Connect under ROSCOE interactive mode, to debug a specific step in a job with
multiple steps may require that you unit test the step by creating the necessary files and

4-38 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
establishing the appropriate conditions to simulate that the previous steps were
executed. You may also have to write a driver or stub routine to simulate the logic state
that was set prior to reaching the step you want to test. This requires extensive planning
and setup before debugging can begin.

Using the Batch Connect facility, you do not need to prepare a unit testing environment.
When a job is submitted, steps that are selected for unattended testing execute normally.
When a step is selected for interactive testing, Batch Connect under ROSCOE gains
control and connects the batch address space to a VTAM terminal. In effect, you are
presented with an online debugging session that reads commands from and writes results
to the screen while the program is actually executing in the batch region.

Batch Connect under ROSCOE releases control when you resume execution by entering
the GO command from the last logical statement in the program. Execution is passed to
subsequent steps until an end-of-job is encountered.

JCL Conversion

Job steps marked with the I, IC, U, or UC line command on the Select Job Step screen are
changed to Batch Connect under ROSCOE steps in the JCL and generated to a temporary
file. JCL conversion is as follows:

1. Batch Connect under ROSCOE work file DDs (XPSL000n, XPIN, XDYNAMIC,
XINCLUDE, XPOUT, XPSHOW, XPHELP, XPSCRIPT) are inserted.

2. If a STEPLIB exists in the user’s JCL, the following concatenations are generated:

– XDYNAMIC
– From the SETUP screen, option 1, the libraries specified on the Base Products

screen
– Product-specific libraries

• XPEDITER/TSO
• CSS
• Code Coverage (if installed)

– User load libraries from the JCL’s STEPLIB

3. If a STEPLIB does not exist in the user’s JCL, a STEPLIB is generated with the
following concatenations:

– XDYNAMIC
– From the SETUP screen, option 1, the libraries specified on the Base Products

screen
– Product-specific libraries

• XPEDITER/TSO
• CSS
• Code Coverage (if installed)

– JOBLIB libraries, if applicable

Batch Connect under ROSCOE looks in the STEPLIB when attempting to intercept a
program for debugging and analysis.

4. EXEC PGM= is updated as follows to point to the appropriate Batch Connect under
ROSCOE module name.

– EXEC PGM=XPTSO (for interactive mode)
– EXEC PGM=XPBATCH (for unattended mode).

5. XPIN control cards are built. The control cards tell XPEDITER what environment and
program to test.

Getting Started 4-39
Using Batch Connect Under ROSCOE Commands in Batch Connect Mode

Interactive Debugging

When you use the I (INTERACTIVE) line command to select a job step for interactive
debugging, all Batch Connect under ROSCOE commands except the following can be
used:

ALLOC
SET PFnn

You can also use script files in interactive mode. However, keep in mind that only
primary commands can be used in a script file.

• An initial script member name can be specified in the INITSCR field on the Select Job
Step screen or you can edit your execution JCL and use the INITSCR parameter on the
TEST or INTERCEPT commands.

• A test script member name can be specified by using the INCLUDE command on the
command line during the test session.

• A post script member name can be specified in the POSTSCR field on the Select Job
Step screen, or by editing your execution JCL and using the POSTSCR parameter on
the TEST or INTERCEPT commands.

• An abend script is not applicable in interactive mode.

Intercepting Abends in Batch Connect Mode

Abend processing in a Batch Connect interactive session behaves the same as an Batch
Connect under ROSCOE interactive session. When an abend occurs, a message is
displayed at the top of the screen informing you that you can use the AA SNAP command
(if you have Abend-AID Release 7.0.2 or above installed at your site) or the LOG
command to view information about the abend.

Test Session Management Using Scripts

A script is a predefined stream of Batch Connect under ROSCOE commands that can be
used to:

1. Initialize a debugging session (initial script).
2. Execute a set of commands during the debugging session (test script).
3. Execute a set of commands at the end of a session (post script).
4. Execute a set of commands when an abend occurs in an unattended batch session

(abend script).

Scripts enable you to:

• Eliminate redundant keystrokes.
• Play back the commands established during a previous session.
• Run regression testing.

You create and maintain the scripts and the script libraries you use. A script library is a
partitioned dataset (PDS) that can be FB 80 (fixed block with a record length of 80) or a
VB 255 (variable blocked with a maximum record length of 255). If you use FB 80, only
the data in columns 1 through 72 is recognized.

If you intend to use a script during the test session, the script library must be
preallocated before the session begins. Use the SETUP command and select Option 3
(INCLUDES) on the Setup Menu to allocate the library, unless the script member is
contained in a a Site-wide library specified at installation time.

4-40 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Initial Script

An initial script is executed at the beginning of the debugging session or at the BEFORE
breakpoint of each module. It can be used to:

• Set initial PF key values.

• Specify Batch Connect under ROSCOE debugging session processing options with the
SET command.

• Set initial breakpoints in modules.

In interactive mode, the initial script member name is specified in the Initial Script field
on the selected environment test screen.

In Batch Connect interactive or unattended mode, the initial script member name is
specified in the INITSCR field on the Select Job Step screen or you can edit your
execution JCL and use the INITSCR parameter on the TEST or INTERCEPT commands.

The ability to process SET commands before the program is loaded is the most useful
feature of the initial script. The following SET commands either configure Batch Connect
under ROSCOE or control the manner in which Batch Connect under ROSCOE loads
programs:

SET DYNAMIC SET STATIC
SET EXCLUDE SET TRANSFER

The following commands determine the size of the log and the way information is
represented.

SET HEXMODE
SET LOGSIZE
SET NONDISP

Test Script

A test script is used to execute Batch Connect under ROSCOE debugging commands
during a debugging session. The commands in the test script are executed in the order
they are read, as if they had been entered serially from the terminal.

In interactive mode or Batch Connect interactive, use the INCLUDE command with the
test script member name at any time within the session to execute a script command
stream.

In unattended batch, the test script member name is specified by using the INCLUDE
command in the JCL job stream.

In interactive mode, Batch Connect under ROSCOE automatically generates a test script
of all the commands entered during the debugging session. The generated file can be
edited and copied into a script library for later use when you want to duplicate the
debugging session. The generated test script is accessed by typing the SCRIPT command
on the command line of the Test screen after a debugging session.

Post Scripts

A post script is comprised of a command or set of commands that are executed when the
end of the program is encountered. The commands are effectively executed after the
debugging session is ended, but before the Batch Connect under ROSCOE environment is
exited.

A post script has many purposes. For instance, it lets you display (PEEK) the value of
variables at the close of the debugging session and show the count tallied on program
statements.

Getting Started 4-41
In interactive mode, a post script member name is specified in the Post Script field on the
selected environment test screen.

In Batch Connect interactive or unattended mode, a post script member name can be
specified in the POSTSCR field on the Select Job Step screen, or by editing your execution
JCL and using the POSTSCR parameter on the TEST or INTERCEPT commands.

Note: It is suggested that you use PEEK instead of KEEP in a post script.

Abend Scripts

An abend script is an Batch Connect under ROSCOE command or set of commands that
are executed when an abend occurs. You can use an abend script only when debugging in
unattended mode.

Use the SET ABENDSCR command in the JCL job stream to specify the abend script to be
executed when an abend occurs. The commands included in that script are executed
whenever an abend occurs, or until another SET ABENDSCR command is executed. Any
number of SET ABENDSCR commands can be included in a job stream.

Note: It is suggested that you use PEEK instead of KEEP in an abend script.

Creating and Editing Scripts

In a script, the following must be observed:

1. Commands cannot exceed 61 characters.

2. Commands must be entered in uppercase. Lowercase characters are not valid.

3. Only one Batch Connect under ROSCOE command on a single line.

4. A command can be continued beyond a single line without a continuation character.

5. A quoted string must be contained on one line.

6. Test scripts can be nested without limit by inserting additional INCLUDE commands
within the test script.

7. Comment lines can be included by entering an asterisk (*) in column 1.

8. When used within inserted code, the INCLUDE command will be executed when the
inserted code is executed.

Scripts are extremely useful under certain debugging circumstances. For example,
suppose you end a debugging session knowing that at some later time you intend to
retest the program along the same lines. A script is an efficient way to quickly reproduce
that session without having to reenter the commands individually.

Saving And Using Generated Scripts

In interactive mode, Batch Connect under ROSCOE automatically generates a test script
of all the commands entered during the debugging session. The following steps will show
you how to save and use the script for later use when you want to duplicate the
debugging session:

1. When the debugging session is completed, the message Log and Script Created
appears in the upper right corner of the Test screen. Enter SCRIPT on the command
line of the Test screen.

2. Press PF3 to save the edited script.

3. On the Data Set Disposition Screen, enter C in the Process Option field to copy the
edited script to a partitioned dataset (PDS).

4-42 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
4. If you have already allocated a PDS for this purpose, enter the PDS name in the
DSNAME field of this screen and a name for the edited script in the Member Name
field. Press Enter and skip to Step 6. Otherwise, go to the next step.

5. If you have not allocated a PDS, you can do so at this time by entering a library name
in the DSNAME field of the screen and a name for the edited script in the Member
Name field. Press Enter and the New Dataset allocation screen is displayed with the
dataset name you selected, prefilled in the Dataset Name field. Enter the parameters
for the dataset according to your site standards and press Enter to process.

6. You are returned to the Test screen and a message specifying the number of lines that
were copied is displayed in the upper right corner of the screen. If your PDS is not
specified in setup on the Test Script Libraries screen, enter SETUP from the Test
screen and enter 3 on the Setup Menu screen. Then enter the PDS name on the Test
Script Libraries screen. Press Enter to process.

7. Press PF3 to return to the Test screen.

8. When you want to use the script for a subsequent test session, specify the PDS
member name of the script in the Test screen’s Initial Script field or use the INCLUDE
command followed by the PDS member name to execute the script after the source is
displayed.

Note: The LOG and SCRIPT commands are still displayed on the Test screen. This means
that the log and script files from the previous session are still active. If you
intend to start another debugging session and want to use fresh log and script
files, press PF3 to return to the Batch Connect under ROSCOE Primary Menu and
then enter option 2 to return to the Test screen. This deletes the previous log and
script files and you are ready to begin a new session.

Script Example

Suppose you want to set a number of breakpoints that are sufficiently spaced apart and
require you to scroll up after setting each breakpoint. A script comprised of these
breakpoint commands could initialize the session, setting the breakpoints. This would
eliminate the need to scroll in order to enter the commands.

BEFORE 24 30 TRIMAINP:
AFTER TRITSTP:DETERMINE_TYPE
COUNT 24 30

Using Batch Connect Under ROSCOE Commands in a Script (Interactive)

The following commands can be included in a script for interactive debugging of
Assembler or PL/I programs:

AA SNAP DELETE IF MOVE SHOW
AFTER EXCLUDE INCLUDE PAUSE SKIP
AT EXIT INTERCEPT PEEK SOURCE
BEFORE GO KEEP RESET TRACE
BROWSE GOTO LINE RETURN WHEN
COUNT GPREGS LOAD SET

Note: The PAUSE and IF commands can be used only within an insert.

The following commands cannot be included in a script for interactive debugging of
Assembler or PL/I programs:

ALLOC DOWN LEFT RIGHT UP
BOTTOM DRIGHT LOCATE RUN WHEREIS
CCHILITE END LOG STATUS XCHANGE
CONNECT FADB2 MEMORY TEST XPED
DLEFT FIND NOLINES TOP
DLI HELP RETEST TSO

Getting Started 4-43
Starting a Session With Batch JCL
This section discusses how to manually change your execution JCL to invoke an
XPEDITER/TSO debugging session in unattended or interactive (Batch Connect) batch
modes. No file allocation utility is required, and you can even use your production JCL
for IMS/DB, BTS, and DB2 programs.

To debug your program with XPEDITER/TSO in unattended or interactive batch, follow
the steps listed below:

1. Retrieve your standard TSO program execution JCL.

2. Follow the instructions in member BATCHTSO from the SLXTSAMP dataset, and
make the appropriate changes to the JCL.

3. Submit the job. If you are running unattended batch, the test results will be saved in
the XPOUT file. If you are using interactive batch, you must connect to the job to
complete testing.

The panel displayed in Figure 4-22 shows JCL that runs a simple job without
XPEDITER/TSO. Figure 4-23 on page 4-44 is an example of the JCL after it is modified to
run with XPEDITER/TSO. For this simple example, the log, script, and document datasets
are printed, then deleted. The actual modifications to your JCL will vary from those
shown. Refer to “Setting Up the Batch JCL” on page 4-45 for an explanation of the
modifications.

Figure 4-22. JCL to Run a Program Without XPEDITER/TSO

//MYJOB JOB (ACCOUNTING),
//* NOTIFY=TSOUSER,
// CLASS=A,MSGCLASS=A,
// MSGLEVEL=(1,1),TIME=(,10)
//*
//* RUN TRIMAIN IN BATCH WITHOUT XPEDITER/TSO
//*
//MYTEST EXEC PGM=TRIMAIN
//STEPLIB DD DSN=USER.LOADLIB,DISP=SHR
//*
//* ALLOCATE ALL INPUT AND OUTPUT DDNAMES
//*
//INFILE DD DSN=COMPWARE.XT.SLXTSAMP(TRIDATA),
// DISP=SHR
//OUTFILE DD SYSOUT=(*)
//SYSOUT DD SYSOUT=(*)

4-44 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 4-23. JCL to Run a Program With XPEDITER/TSO

//MYJOB JOB (ACCOUNTING),
//* NOTIFY=TSOUSER, NOTE 1
// CLASS=A,MSGCLASS=A, NOTE 2
// MSGLEVEL=(1,1),TIME=(,10)
//*
//* RUN TRIMAIN IN INTERACTIVE BATCH WITH XPEDITER/TSO
//*
//CREATE EXEC PGM=IEFBR14 NOTE 3
//XPSCRIPT DD DISP=(NEW,PASS),
// DCB=(LRECL=80,BLKSIZE=3120),
// UNIT=SYSDA,
// SPACE=(TRK,(2,2)),
// DSN=&&XPSCR
//XPDOC DD DISP=(NEW,PASS),
// DCB=(LRECL=80,BLKSIZE=3120),
// UNIT=SYSDA,
// SPACE=(TRK,(2,2)),
// DSN=&&XPDOC
//XPOUT DD DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(2,2)),
// DSN=&&XPLOG
//MYTEST EXEC PGM=XPTSO,REGION=4098K NOTE 4
//XDYNAMIC DD DISP=(NEW,DELETE), NOTE 5
// UNIT=SYSDA,
// DCB=(RECFM=U,BLKSIZE=BBBBB,DSORG=PO),
// SPACE=(CYL,(5,1,10))
//STEPLIB DD DISP=(OLD,DELETE),DSN=*.XDYNAMIC,VOL=REF=*.XDYNAMIC NOTE 6
// DD DSN=COMPWARE.XT.SLXTLOAD,DISP=SHR
// DD DSN=COMPWARE.CSS.LOADLIB,DISP=SHR
// DD DSN=YOUR.USER.LOADLIB,DISP=SHR NOTE 7
//*
//* ALLOCATE ALL INPUT AND OUTPUT DDNAMES
//*
//INFILE DD DSN=COMPWARE.XT.SLXTSAMP (TRIDATA), NOTE 8
// DISP=SHR
//OUTFILE DD SYSOUT=(*)
//SYSOUT DD SYSOUT=(*)
//XPSL0001 DD DISP=SHR,DSN=COMMON.DDIO NOTE 9
//XINCLUDE DD DISP=SHR,DSN=SYS2.XPEDITER.V7R0M0.INCLUDE
//XPHELP DD DISP=SHR,DSN=SYS2.XPEDITER.V7R0M0.HELP
//XOPTIONS DD DISP=SHR,DSN=SYS2.XPEDITER.V7R0M0.XOPTIONS
//XPSCRIPT DD DISP=(MOD,PASS),DSN=&&XPSCR
//XPDOC DD DISP=(MOD,PASS),DSN=&&XPDOC
//XPOUT DD DISP=(MOD,PASS),DSN=&&XPLOG
//XPSHOW DD DISP=(NEW,DELETE),UNIT=SYSDA,
// DCB=(RECFM=FB,BLKSIZE=6160,LRECL=80),
// SPACE=(TRK,(2,2))
//XPIN DD *
XPED TSO
TEST TRIMAIN
//PRINTLOG EXEC PGM=IEBGENER,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DISP=(OLD,PASS),DSN=&&XPLOG
//SYSUT2 DD SYSOUT=*
//*
//PRINTDOC EXEC PGM=IEBGENER,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DISP=(OLD,PASS),DSN=&&XPDOC
//SYSUT2 DD SYSOUT=*
//*
//PRINTSCR EXEC PGM=IEBGENER,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DISP=(OLD,PASS),DSN=&&XPSCR
//SYSUT2 DD SYSOUT=*

Getting Started 4-45
Setting Up the Batch JCL

The numbers listed above in Figure 4-23 correspond to the following notes:

Notes:

1. TSO users should modify this to their TSO user ID.

2. Change to your site’s standard values.

3. Add this step before the step that executes your program. The CREATE EXEC step
creates the log, script, and document datasets.

4. Change to PGM=XPTSO to run interactive batch. Change to PGM=XPBATCH to run
unattended batch. The region size may need to be increased. An XPEDITER/TSO
session requires up to 500K more region than a session without XPEDITER/TSO. Keep
the original parameter list, if any.

5. This DD statement creates a dynamic work area that XPEDITER/TSO requires to
execute. Place it before the STEPLIB concatenation. This is a temporary PDS that will
be deleted when the job ends. Change the BLKSIZE to be equal to the largest
blocksize of any library in the STEPLIB concatenation for the test. This step is
required.

6. In the STEPLIB ddname, concatenate the XPEDITER/TSO work dataset created by the
XDYNAMIC ddname at the beginning of STEPLIB. The XPEDITER/TSO LOADLIB and
the CSS LOADLIB must also be in the STEPLIB concatenation.

7. Change to your user LOADLIB.

8. Specify your library.

9. Add the following nine ddnames after the last standard ddname. Make sure the
XPEDITER/TSO ddnames are allocated to the correct dataset names.

XPSL000n DD

DDIO dataset that contains the source listing members of the compiled modules.

XINCLUDE DD

Optional script file (PDS) to be used with the INCLUDE, INITSCR, and POSTSCR
commands. This ddname can be omitted if your site does not support INCLUDE
scripts or if INCLUDE, INITSCR, and POSTSCR are not used. If the Site-wide
Script Library is desired, it should be first in the concatenation.

XPHELP DD

XPEDITER/TSO help dataset.

XOPTIONS DD

Enhanced FIND function parameters file.

XPSCRIPT DD

The generated script dataset. All XPEDITER input commands are recorded in this
file. System responses are not recorded.

XPDOC DD

The document dataset. This dataset should only be utilized under the direction
of XPEDITER Technical Support.

XPOUT DD

The output (log file) from this job. If running an interactive batch job, XPOUT
must be directed to a dataset with DISP=MOD.

If you direct the output of XPOUT ddname to a dataset rather than to SYSOUT,
specify the disposition as MOD. The DCB attributes are:

DCB=(RECFM=VBA,LRECL=137,BLKSIZE=6854)

4-46 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
XPSHOW DD

A temporary work file used in processing XPEDITER SHOW commands.

XPIN DD

Enter the commands to execute the test session. The first command must be
XPED with the appropriate environment parameter. Then, the TEST command
with the program name and any required parameters. When running an
interactive batch test, this is the only input required. The XPED and TEST
commands are described in the XPEDITER/TSO and XPEDITER/IMS Reference Manual.

If running unattended batch, the debugging commands follow the TEST
command. The debugging commands can be included as a command stream after
the TEST command, or a dataset containing the commands can be specified on
the TEST command. Refer to “Creating a Command Stream” on page 4-46 for
more information.

Usage Notes
1. If you are using a PROC, remember that JCL rules for PROCs prohibit the use of DD *

inline data streams. For that reason, each reference to XPIN should be coded:

//XPIN DD DUMMY

or

//XPIN DD DDNAME=SYSIN

or omitted entirely.

Then, in the actual JCL that invokes your new PROC, you must override the XPIN
ddname with your inline XPED and TEST (or INTERCEPT for BTS) commands.

When you execute the PROC, insert the //stepname.XPIN DD * statement in the
override JCL.

2. If you are using a job that checks condition codes or abends for recovery or follow-up
steps, be aware that XPEDITER/TSO usually produces a condition code of zero
regardless of how the application program or XPEDITER/TSO actually ends.

3. No additional tasks are required to implement batch testing of programs compiled
with CA-OPTIMIZER. However, it is important to note that XPEDITER/TSO
dynamically turns off DTECT, PFLOW, and XCOUNT if specified. Therefore, a batch
job run with both XPEDITER/TSO and CA-OPTIMIZER receives only XPEDITER/TSO
debugging output.

4. Even if your application programs would normally find any required Language
dependent run-time subroutines (including LE - Language Environment) without
being included in the JOBLIB/STEPLIB of the Batch JCL (usually from the LINKLIST
or (E)LPA), the libraries must still be specified as part of the test session setup. This
will ensure that XPEDITER’s Task Library will be properly configured. For manually
altered Batch JCL, you should include the run-time libraries in the STEPLIB DD
statement concatenations of the JCL step(s) that were altered to be intercepted.

Creating a Command Stream

Batch mode XPEDITER/TSO reads in a command stream from the XPIN DD, performs the
debugging functions, and writes the results to the XPOUT DD. A command stream is a
predefined set of XPEDITER/TSO commands stored in a PDS member or a sequential file,
or included as instream data.

The first step in creating a command stream is to specify the environment in which the
program is to be debugged. Enter the XPED command with the type of environment (for
example, TSO corresponds to the interactive STANDARD environment).

Getting Started 4-47
The next step is to specify the name of the program to be debugged. Enter the TEST
command along with the program name if the execution environment was specified as
BATCH or IMS. Enter the INTERCEPT command along with the program name if the
execution environment was specified as BTS.

Example 1:

XPED TSO
TEST TRIMAIN

Example 2:

XPED IMS
TEST TRIMAIN

Example 3:

XPED BTS
INTERCEPT TRIMAIN

The third step is to list all the debugging tasks to be performed during the batch
debugging session. Under the BATCH or IMS environment, you can enter other
XPEDITER/TSO commands following the TEST command; however, you can also
alternatively execute a test script stored in a separate file.

All XPEDITER/TSO commands must be entered in uppercase when creating a command
stream. At least one space is required to delimit the keyword from its value. Commands
can be entered on one line or on consecutive lines.

Specifying Multiple Debugging Sessions in One Job Stream

Although you cannot change environments during a debugging session, it is expected
that you will debug various programs, thus TEST or INTERCEPT can be used as many
times as necessary.

Multiple programs within the same environment can be debugged in one batch run. The
TEST command is used to specify the program to be debugged in batch mode. Any
number of debugging sessions can be run within a single job stream (except for IMS
debugging sessions). All XPEDITER/TSO commands following a TEST command are
executed in relation to the program specified by the TEST command, until another TEST
or INTERCEPT command is encountered.

The INTERCEPT command is used to change module qualification. Any commands
entered following the INTERCEPT command and before another TEST, INTERCEPT, or
EXIT command are executed in relation to the program specified on the INTERCEPT
command.

For BTS debugging, only the XPED and INTERCEPT commands are allowed within a
command stream. All debugging session commands are included in a test script
associated with the program specified on the INTERCEPT command.

Creating Batch JCL for XPEDITER/TSO Options

Database Support (Including IMS/DB and IMS/DB With DB2 Testing Under TSO)

To test your IMS/DB program with unattended or interactive batch, use the steps listed
below:

1. Retrieve your IMS/DB program execution JCL.

2. Copy the member BATCHIMS from the SLXTSAMP dataset and follow the
instructions in it.

3. If you are using a PROC, change the XPIN ddname to:

4-48 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
//XPIN DD DUMMY

4. When you are executing the PROC, insert the //stepname.XPIN DD * statement in
the override JCL.

For more information regarding the use of the //XPIN DD statement in a PROC, refer
to “Usage Notes” on page 4-46.

5. Submit the job. If you are running unattended batch, the test results will be saved in
the XPOUT file. If you are using interactive batch, you must connect to the job to
complete testing.

BTS Support

To test your BTS program with unattended or interactive batch, use the steps listed
below:

1. Retrieve your BTS program execution JCL.

2. Copy the member BATCHBTS from the SLXTSAMP dataset and follow the
instructions in it.

3. If you are using a PROC, change the XPIN ddname to:

//XPIN DD DUMMY

4. When you are executing the PROC, insert the //stepname.XPIN DD * statement in
the override JCL.

For more information regarding the use of the //XPIN DD statement in a PROC, refer
to “Usage Notes” on page 4-46.

5. Submit the job. If you are running unattended batch, the test results will be saved in
the XPOUT file. If you are using interactive batch, you must connect to the job to
complete testing.

DB2 Support

To test your DB2 program with unattended or interactive batch, use the steps listed
below:

1. Retrieve your DB2 program execution JCL.

2. Copy the member BATCHDB2 from the SLXTSAMP dataset and follow the
instructions in it.

3. If you are using a PROC, change the XPIN ddname to:

//XPIN DD DUMMY

4. When you are executing the PROC, insert the //stepname.XPIN DD * statement in
the override JCL.

For more information regarding the use of the //XPIN DD statement in a PROC, refer
to “Usage Notes” on page 4-46.

5. Submit the job. If you are running unattended batch, the test results will be saved in
the XPOUT file. If you are using interactive batch, you must connect to the job to
complete testing.

Test Session Management Using Scripts
A script is a predefined stream of XPEDITER/TSO commands that can be used to:

1. Initialize a debugging session (initial script).

Getting Started 4-49
2. Execute a set of commands during the debugging session (test script).
3. Execute a set of commands at the end of a session (post script).
4. Execute a set of commands when an abend occurs in an unattended batch session

(abend script).

Scripts enable you to:

• Eliminate redundant keystrokes.
• Play back the commands established during a previous session.
• Run regression testing.

You create and maintain the scripts and the script libraries you use. A script library is a
partitioned dataset (PDS) that can be FB 80 (fixed block with a record length of 80) or a
VB 255 (variable blocked with a maximum record length of 255). If you use FB 80, only
the data in columns 1 through 72 is recognized.

If you intend to use a script during the test session, the script library must be
preallocated before the session begins. Use the SETUP command and select Option 3
(INCLUDES) on the Setup Menu to allocate the library, unless the script member is
contained in a Site-wide library specified at installation time. Refer to “Saving And Using
Generated Scripts” on page 4-41 for steps on using a generated script.

Initial Scripts

An initial script is executed at the beginning of the debugging session or at the before
breakpoint of each module. It can be used to:

• Set initial PF key values.

• Specify XPEDITER/TSO debugging session processing options with the SET
command.

• Set initial breakpoints in modules.

• Initialize data items within the program (using MOVE command).

In interactive mode, the initial script member name is specified in the Initial Script field
on the selected environment test screen.

In Batch Connect interactive or unattended mode, the initial script member name is
specified in the INITSCR field on the Select Job Step screen, or you can edit your
execution JCL and use the INITSCR parameter on the TEST or INTERCEPT command.

The ability to process SET commands before the program is loaded is the most useful
feature of the initial script. The following SET commands either configure
XPEDITER/TSO or control the manner in which XPEDITER/TSO loads programs:

SET CBLTRAP SET STATIC
SET DYNAMIC SET TRANSFER
SET EXCLUDE

The following commands determine the size of the log and the way information is
represented.

SET HEXMODE
SET LOGSIZE
SET NONDISP

Refer to the XPEDITER/TSO and XPEDITER/IMS Reference Manual for further information
regarding the use of the SET command parameters.

4-50 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Test Scripts

A test script is used to execute XPEDITER/TSO debugging commands during a debugging
session. The commands in the test script are executed in the order they are read, as if
they had been entered serially from the terminal.

In interactive mode or Batch Connect interactive, use the INCLUDE command with the
test script member name at any time within the session to execute a test script command
stream.

In unattended batch, the test script member name is specified by using the INCLUDE
command in the JCL job stream.

In interactive mode, XPEDITER/TSO automatically generates a test script of all the
commands entered during the debugging session. The generated file can be edited and
copied into a script library for later use when you want to duplicate the debugging
session. The generated test script is accessed by typing the SCRIPT command on the
command line of the Test screen after a debugging session. Refer to “Saving And Using
Generated Scripts” on page 4-41 for additional information.

Post Scripts

A post script is comprised of a command or set of commands that are executed when the
end of the program is encountered. The commands are effectively executed after the
debugging session is ended, but before the XPEDITER/TSO environment is exited.

A post script has many purposes. For instance, it lets you display (PEEK) the value of
variables at the close of the debugging session and show the COUNT tallied on program
statements.

In interactive mode, a post script member name is specified in the Post Script field on the
selected environment test screen.

In Batch Connect interactive or unattended mode, a post script member name is
specified in the POSTSCR field on the Select Job Step screen, or by editing your execution
JCL and using the POSTSCR parameter on the TEST or INTERCEPT commands.

Notes:
1. It is suggested that you use PEEK instead of KEEP in a post script.
2. When debugging VS COBOL II programs compiled with DATA(31) and RENT, and

linked with AMODE(31) and RMODE(ANY), post scripts cannot be used to execute
the PEEK, KEEP, and MOVE commands.

Abend Scripts

An abend script is an XPEDITER/TSO command or set of commands that are executed
when an abend occurs. You can use an abend script only when debugging in unattended
mode.

Use the SET ABENDSCR command in the JCL job stream to specify the abend script to be
executed when an abend occurs. The commands included in that script are executed
whenever an abend occurs until another SET ABENDSCR command is executed. Any
number of SET ABENDSCR commands can be included in a job stream.

Note: It is suggested that you use PEEK instead of KEEP in an abend script.

Creating and Editing Scripts

In a script, the following must be observed:

• Commands cannot exceed 100 characters.

Getting Started 4-51
• Commands must be entered in uppercase. Lowercase characters are not valid.

• Only one XPEDITER/TSO command can be entered on a single line.

• A command can be continued beyond a single line without a continuation character.

• A quoted string must be contained on one line.

• Test scripts can be nested without limit by inserting additional INCLUDE commands
within the test script.

• Comment lines can be included by entering an asterisk (*) in column 1.

• When used within inserted code, the INCLUDE command is executed when the
inserted code is executed.

Scripts are extremely useful under certain debugging circumstances. For example,
suppose you end a debugging session knowing that at some later time you intend to
retest the program along the same lines. A script is an efficient way to quickly reproduce
that session without having to reenter the commands individually.

Saving and Using Generated Scripts

In interactive mode, XPEDITER/TSO automatically generates a test script of all the
commands entered during the debugging session. The following steps will show you how
to save and use the script for later use when you want to duplicate the debugging session.

Option 1 - Batch Connect Under XPEDITER/TSO

The following steps apply to XPEDITER/TSO only:

1. When the debugging session is completed, the message Log and Script Created
appears in the upper right corner of the Test screen. Enter SCRIPT on the command
line of the Test screen.

2. Edit the displayed script according to the guidelines in “Creating and Editing Scripts”
on page 4-41.

3. Press PF3 to save the edited script.

4. On the Data Set Disposition Screen, enter C in the Process Option field to copy the
edited script to a partitioned dataset (PDS).

5. If you have already allocated a PDS for this purpose, enter the PDS name in the
DSNAME field of this screen and a name for the edited script in the Member Name
field. Press Enter and skip to Step 7. Otherwise, go to the next step.

6. If you have not allocated a PDS, you can do so at this time by entering a library name
in the DSNAME field of the screen and a name for the edited script in the Member
Name field. Press Enter and the New Dataset Allocation screen is displayed with the
dataset name you selected prefilled in the Dataset Name field. Enter the parameters
for the dataset according to your site standards and press Enter to process.

7. You are returned to the Test screen and a message specifying the number of lines that
were copied is displayed in the upper right corner of the screen. If your PDS is not
specified in setup on the Test Script Libraries screen, enter SETUP from the Test
screen and enter 3 on the Setup Menu screen. Then enter the PDS name on the Test
Script Libraries screen. Press Enter to process.

8. Press PF3 to return to the Test screen.

9. When you want to use the script for a subsequent test session, specify the PDS
member name of the script in the Test screen’s Initial Script field or use the INCLUDE
command followed by the PDS member name to execute the script after the source is
displayed.

4-52 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Note: The LOG and SCRIPT commands are still displayed on the Test screen. This
means that the log and script files from the previous session are still active. If
you intend to start another debugging session and want to use fresh log and
script files, press PF3 to return to the XPEDITER/TSO Primary Menu and then
enter option 2 to return to the Test screen. This deletes the previous log and
script files, and you are ready to begin a new session.

Option 2 - Batch Connect Under ROSCOE

The following steps apply when using the Batch Connect under ROSCOE Environment:

1. Create a dataset that will be used in the test session while the Batch Connect job is
running. This dataset should be allocated as follows: DSORG=PS, RECFM=FB,
LRECL=80, and BLKSIZE=3120.

2. Go to the SETUP menu on any of the ROSCOE Front End screens and go to the
OPTION field and select 6 from the menu choices.

3. Press Enter and you will view the Batch Connect under ROSCOE SCRIPT DATASET
screen as displayed in Figure 4-24 on page 4-52.

Figure 4-24. Batch Connect Under ROSCOE SCRIPT DATASET

4. Specify the dataset name allocated in Step 1 and set the process option based on
whether you wish to append or delete the old content.

5. Run your test and, upon completion, copy the data from the dataset on the
XPSCRIPT to a member in your INCLUDE dataset.

6. From this point forward, you need to include the script on the Select Job Step screen
as your initial script or you must issue the INCLUDE script name while in the source.

Script Examples

Example 1:

Suppose you are debugging TRIRPT as a stand-alone program. To do so, you need to
MOVE values that have been passed from TRIMAIN to variables in the Linkage Section.
The Linkage Section of TRIRPT is shown in Figure 4-25.

 -----------------------XPEDITER/ROS - SCRIPT DATASET ---------------------
 COMMAND ===>

 Script Dataset Name: (DSNAME must be pre-allocated as:
 DSORG=PS,RECFM=FB,LRECL=80,BLKSIZE=3120)
 DSNAME ===>

 Allocation Parameters: Process Options: A (Append)
 Data Class ===> D (Delete)
 Space Units ===>
 Primary ===>
 Secondary ===>
 Storage Class ===>
 Unit ===>
 Volume ===>

 Dispositon Before Test:
 Process Option ===> (A,D Used only if DSNAME is specified)

 Press ENTER to process or enter END command to terminate

Getting Started 4-53
Figure 4-25. Linkage Section of the TRIRPT Program

In this case, use a script to move valid data to the variables in the Linkage Section before
beginning the debugging session. For example, the script shown in Figure 4-26 on page
4-53 moves valid data to the table variables and counter. This script can be executed as a
test script with the INCLUDE command within a debugging session, or the MOVE
commands can be made part of an initial script command stream executed at the outset
of the debugging session.

Figure 4-26. Script with MOVES Passing Values from TRIMAIN to TRIRPT Variables

Example 2:

Suppose you want to set a number of breakpoints that are sufficiently spaced apart and
require you to scroll up after setting each breakpoint. A script comprised of these
breakpoint commands could initialize the session, setting the breakpoints. This would
eliminate the need to scroll in order to enter the commands. Such a script is illustrated
below in Figure 4-27.

Figure 4-27. Sample Script

Using XPEDITER/TSO Commands in a Script (Interactive)

Refer to the INCLUDE command in the XPEDITER/TSO and XPEDITER/IMS Reference Manual
for a list of the commands that can and cannot be included in a script for interactive
debugging of COBOL programs.

Using XPEDITER/TSO Commands in a Script (Unattended)

Since all of the commands entered in a script for unattended debugging are executed
before the first statement in the program is encountered, careful planning of the
debugging session is critical. Here are some considerations:

• Store all your command streams as members of your INCLUDE library. Then you are
able to keep track of all data streams you have used. It also saves time by not having
to reenter all the commands for each session.

 000028 LINKAGE SECTION.
 000029 01 TABLE-OF-NAMES-N-CNTRS.
 000030 05 N-N-C OCCURS 4 TIMES
 000031 INDEXED BY TX.
 000032 10 T-NAME PIC X(21).
 000033 10 T-CNTR PIC 9(04).

 MOVE ’EQUILATERAL TRIANGLES’ TO T-NAME(1)
 MOVE ’ISOSCELES TRIANGLES’ TO T-NAME(2)
 MOVE ’SCALENE TRIANGLES’ TO T-NAME(3)
 MOVE ’INVALID TRIANGLES’ TO T-NAME(4)
 MOVE 2 TO T-CNTR(1)
 MOVE 3 TO T-CNTR(2)
 MOVE 6 TO T-CNTR(3)
 MOVE 4 TO T-CNTR(4)

 BEFORE 34 41 TRIMAIN:
 AFTER 40 94 132 TRITST: TRIRPT:WRITE-DTLS
 COUNT 43 55 93 101
 SKIP 98 THRU 134 WRITE-REPORT

4-54 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
• AFTER, BEFORE, and TRACE commands give approximately the same information.
All three update the Keep window.

When an AFTER command is executed and changes are logged, the log entry for the
command identifies the statements before and after the place where execution is
paused. Therefore, use of the AFTER command is a good means of tracking the flow
of execution. It is particularly useful following a conditional statement when you are
uncertain of the execution path.

• To track a value change in a variable, using the WHEN command is better than using
the TRACE command, which produces a large amount of output in the log file.

• PEEK is an immediate command, which means the display to the log occurs as soon
as the PEEK command is encountered. PEEK is most useful if you want to see a field
at the very beginning or at the very end of a program, and you only want to see the
value once. It can be useful within inserted code. You could insert a PEEK after the
statement you want executed. The PEEK command would be executed each time the
statement was executed.

• In general, the KEEP command is used more often than the PEEK command because a
keep causes the value of a data item to be displayed repeatedly. KEEP displays a value
only at the location of a breakpoint and only when a value has changed. Therefore
the best way to watch data change within a program is to set breakpoints (AFTER,
BEFORE, or TRACE) on key statements and keep all the data items you want to
monitor.

CAUTION:
In post and abend scripts, use the PEEK command instead of the KEEP command.

• The COUNT command can be used to monitor statement execution in a batch
program that processes large amounts of data. To see the results of the COUNT
command, issue the SHOW COUNTS command in a post script at the end of the
debugging session.

• One of the problems with unattended debugging is that normally all commands need
to be executed at the beginning of the debugging session. This can create more
output than the user needs. An INSERT command allows XPEDITER/TSO commands
to have delayed execution. The XPEDITER/TSO commands within an INSERT are not
executed until the inserted code is executed; that is, when the previous statement is
executed. INSERT can be a very powerful command in an unattended batch
debugging session.

Refer to the INCLUDE command in the XPEDITER/TSO and XPEDITER/IMS Reference Manual
for a list of the commands that can and cannot be used in a script for an unattended
debugging session for COBOL programs.

Accessing Other Systems From XPEDITER/TSO

Accessing File-AID for DB2

This section describes how to access and exit File-AID for DB2 from XPEDITER/TSO. File-
AID for DB2 is Compuware’s interactive DB2 database management tool that lets you
create, view, change, and customize the DB2 table data associated with your program
without coding SQL. File-AID for DB2 also provides facilities for interactive SQL
development and analysis and a host of utilities. Refer to the File-AID for DB2 Reference
Manual for information about using File-AID for DB2.

XPEDITER/TSO’s DB2 capabilities are greatly enhanced when you have XPEDITER for
DB2 Extension and File-AID for DB2 installed at your site. This versatile union lets you
debug, prototype SQL calls, and analyze COBOL DB2 programs in XPEDITER/TSO. At the
same time, you are also permitted to dynamically access File-AID for DB2, Compuware’s
interactive DB2 database management tool that lets you create, view, change, and

Getting Started 4-55
customize the DB2 table data associated with the program without coding SQL. File-AID
for DB2 also provides facilities for interactive SQL development and analysis and a host of
utilities. Refer to “Using XPEDITER for DB2 Extension” on page 5-44 for information
about how to browse and edit DB2 table data while testing your program, analyze SQL
statement execution with the FADB2 EXPLAIN command, and prototype SQL logic by
inserting SQL statements.

Notes:

1. XPEDITER/TSO supports debugging of any DB2 program within all execution
environments selectable under the Environments Menu, with the following
exceptions:

– The first exception to this XPEDITER/TSO support rule is the XPEDITER/TSO
dialog environment.

– A second exception to normal debugging is that XPEDITER for DB2 Extension
cannot be accessed when using the Batch Connect facility.

2. You must bind your program application plan with File-AID for DB2 if any of the
following apply:

– The program executes statically compiled SQL statements. If the program
executes only dynamically inserted SQL statements, you can either bind your
application plan with File-AID for DB2, or use the File-AID for DB2 default plan in
place of your application plan.

– The program executes in the IMS environment.

Refer to Appendix F, “Binding the Application Plan or Package”for information about
binding.

The following accesses File-AID for DB2 from XPEDITER/TSO:

• Select the FADB2 menu item on the XPEDITER/TSO Primary Menu.
• Enter the FADB2 command on any XPEDITER/TSO Source display screen.

The File-AID for DB2 Primary Option Menu is displayed. The menu lists all File-AID for
DB2 facilities.

Notes:

1. The SQL Development and Analysis facility is available from XPEDITER/TSO only
when File-AID for DB2 is accessed by entering F (FADB2) on the XPEDITER/TSO
Primary Menu.

2. The plan name and DB2 subsystem you specified to start your XPEDITER/TSO test
session are also in effect when you invoke File-AID for DB2 from an XPEDITER/TSO
Source display screen. However, a subsystem switch is not permitted under File-AID
for DB2 when it is accessed from XPEDITER/TSO.

You can bypass the File-AID for DB2 Primary Option Menu by entering the FADB2
command with the keyword or 1-character number or letter that directly accesses a
specific File-AID for DB2 function. For example, to directly access the File-AID for DB2
Browse function from XPEDITER/TSO, enter:

FADB2 BROWSE

The keywords and 1-character numbers or letters that access File-AID for DB2 functions
are listed on the File-AID for DB2 Primary Menu.

Exiting File-AID for DB2

When you finish using File-AID for DB2 functions, you can either:

1. Enter =X to return to the XPEDITER/TSO Source display screen displaying your
source program.

4-56 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
2. Enter END, which will take you to the File-AID for DB2 Primary Option Menu from
which you can select another File-AID for DB2 function.

Connecting to CICS

Option 4 (CICS) on the Primary Menu displays the TSO to CICS Connect Support screen
shown in Figure 4-28. This screen lets you select a CICS system and sub-sequently
connect to a CICS session. It also lets you specify a PF key that enables you to easily
return to TSO.

Figure 4-28. TSO to CICS Connect Screen

Specify a PF key that you can use to toggle from CICS to TSO. Then, enter S in the SEL
area of the CICS system you want to access. Press Enter, and the CICS-VS screen of the
selected region is displayed.

Optionally, a logmode can be entered in the LogMode field and XPEDITER/TSO will
attempt to connect to CICS using the indicated mode. To use the default VTAM defined
logmode, clear the LogMode field.

To return to TSO, press the selected PF key from any screen in your CICS session. When a
currently connected CICS session is ended, the message SESSION TERMINATED appears
in the upper right corner of the CICS Connect screen.

------------------------ XPEDITER/TSO - CICS CONNECT ------------ Row 1 of 3
COMMAND ===> SCROLL ===> CSR

 TOGGLE pf key: ===> PF 24 LogMode ===> (Optional)

Please enter an S or ? by the desired system

 SEL CICS SYSTEM CICS System Description
 --- ----------- --

 _ CICX170P PRODUCTION CICS REGION

 _ CICX170T TEST CICS REGION

 _ CICS170S SALES CICS REGION

******************************* Bottom of data ********************************

5-1

Chapter 5.

5Debugging Interactively Chap 5

This chapter describes how to use XPEDITER/TSO to interactively debug your COBOL
programs. It discusses:

• The source display.

• Using XPEDITER/TSO commands.

• Qualification Rules for XPEDITER/TSO commands.

• Controlling execution and setting breakpoints with the BEFORE, AFTER, GO,
INTERCEPT, RETURN, RETEST, PAUSE, TRACE, AT, COUNT MAX, SKIP, SOURCE, and
WHEN commands.

• Inspecting and manipulating data (variables, registers, and memory) with the
Automatic Keep function and the KEEP, PEEK, MOVE, MEMORY, and GPREGS
commands.

• Analyzing program logic (data flow, execution path, and execution coverage) using
the FIND, EXCLUDE, MONITOR, REVERSE, RESUME, TRACE, SHOW PREV, LOCATE,
and COUNT commands.

• Modifying program logic with the SKIP, INSERT, GOTO, and MOVE commands.

• Displaying file allocations with the SHOW command.

• Translating and expanding EXEC statements using the GEN command.

• Debugging and testing programs that do not have the source (no source listing)
available with the AT command.

• Displaying subsystem-related debugging information for VSAM, IDMS, IMS, and DB2
and environment specific run-time characteristics during a test session. Available
only if you have Abend-AID Release 7.0.2 or above.

• Using test scripts (a predefined stream of XPEDITER/TSO commands) to automate the
test session (INCLUDE command).

In addition, XPEDITER/TSO supports debugging of any DB2 program within any
execution environment selectable under the Environments Menu.

If you have XPEDITER for DB2 Extension and File-AID for DB2 installed at your site, you
can also interactively insert SQL statements in your program, retrieve Explain
information about SQL statements, and browse and edit DB2 table data. A series of
FADB2 commands are available for these functions. Refer to “Using XPEDITER for DB2
Extension” on page 5-44 for more information.

The Source Display
When you start a debugging session, XPEDITER/TSO displays the program source listing
as shown in Figure 5-1 on page 5-2.

5-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 5-1. XPEDITER/TSO Source Display Screen

XPEDITER/TSO automatically sets a before breakpoint on the PROCEDURE DIVISION
statement, and an after breakpoint on the GOBACK or STOP RUN statement.

Figure 5-2 shows an example of entering the SHOW BREAKS command for the program.

Figure 5-2. Result of Using the SHOW BREAKS Command

The execution status field on the ninth line indicates the current execution position and
the <> at the end of line indicates that the screen can be scrolled. An arrow points to the
statement where execution is paused. The breakpoint indicator areas in column 9 and
columns 74 through 80 show the breakpoints that have been set.

Using XPEDITER/TSO Commands
XPEDITER/TSO commands are used to interactively test and debug your programs and to
perform other functions associated with your test session. Some XPEDITER/TSO
commands are primary commands that must be entered on the command line. In many
cases, a command will also have a corresponding line command that can be entered in
the designated line command area on a screen.

Refer to the XPEDITER/TSO and XPEDITER/IMS Reference Manual for detailed information
about each command.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 BEFORE BREAKPOINT ENCOUNTERED
 ** END **

------ --- Before TRIMAIN <>
=====> B PROCEDURE DIVISION.
000035 MAIN-PARA.
000036 PERFORM INIT-PARA.
000037 PERFORM ANALYZE-NEXT-REC
000038 UNTIL OUT-OF-RECS = ’Y’.
000039 PERFORM ENDING-PARA.
000040 A GOBACK.
000041 INIT-PARA.
000042 MOVE ZERO TO N-CNTR (1) N-CNTR (2) N-CNTR (3) N-CNTR (4).
000043 OPEN INPUT INFILE.
000044 MOVE ’N’ TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
000046 READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 SPECIFIED STATEMENTS ARE SHOWN - RESTORE SOURCE WITH ’END’
 ** END **

------ --- Before TRIMAIN <>
************************************* TOP OF MODULE ****************************
- - - - - - - - - - - - - - - - - - - 33 LINES NOT DISPLAYED
=====> B PROCEDURE DIVISION.
- - - - - - - - - - - - - - - - - - - - 5 LINES NOT DISPLAYED
000040 A GOBACK.
- - - - - - - - - - - - - - - - - - - 16 LINES NOT DISPLAYED
************************************ BOTTOM OF MODULE **************************

Debugging Interactively 5-3
Controlling Program Execution
This section describes the XPEDITER/TSO commands that enable you to control program
execution. Some of these commands, called breakpoint commands, are used to start and
stop program execution at any time or when a specified condition occurs. Breakpoint
commands let you designate the location of the pause by statement number, paragraph
name, module name, or by the occurrence of a particular event. The other commands
that control program execution are used to specify the program to be displayed as the
active program.

When program execution is paused, you can enter other XPEDITER/TSO debugging
commands to examine program data, analyze and follow program logic, and many other
debugging functions. Execution resumes when you enter GO or press PF12.

Program execution is automatically stopped when an abend occurs. XPEDITER/TSO
intercepts program abends and automatically pauses at the failing statement. Some
abends can be corrected dynamically, and execution can be resumed without terminating
the session.

Note: If you wish to debug your EXEC DLI and EXEC SQL statements at the expanded
level, place the letter G (GEN) on the line command area next to the statement
and press Enter to display the expanded instructions. You can then set
breakpoints at each generated statement.

Commands That Control Program Execution

The following are XPEDITER/TSO commands that control program execution.

Note: Breakpoint commands can be removed with the DELETE command.

AFTER

Stops program execution after the specified line of code is executed. An after
breakpoint is automatically set on each GOBACK or STOP RUN statement in the
driver program before the program begins executing.

AT

Sets a breakpoint at a sourceless main program or subprogram. Sourceless debugging
and using the AT command are discussed in “Debugging a Sourceless Program” on
page 5-50.

BEFORE

Stops program execution before the specified line of code is executed. A before
breakpoint is automatically set on the PROCEDURE DIVISION statement in the
driver program before the program starts executing. You must set a before breakpoint
at the beginning of a called module if you want to stop execution before the called
module executes.

COUNT

Counts the number of times an instruction or paragraph is executed and suspends
program execution upon reaching a limit.

GO

Begins program execution and resumes execution after a pause.

INTERCEPT

Loads the specified module and sets a before breakpoint at the PROCEDURE
DIVISION before the program begins executing and an after breakpoint on the
GOBACK, STOP RUN, or EXIT PROGRAM.

5-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
PAUSE

Pauses execution within a block of code that has been inserted.

PSEUDOSOURCE

Generates pseudo-assembler code for a program with no DDIO listing member. Using
the PSEUDOSOURCE command is discussed in “Creating Pseudo-Assembler Source”
on page 5-54.

RETEST

Reloads the program you are debugging and restarts the test session.

SKIP

Bypasses execution of source code, which can include bypassing a module. The SKIP
command adds flexibility to your testing by letting you skip instructions that you do
not want executed.

SOURCE

Loads the specified module and makes it the active program. Any subsequent
XPEDITER/TSO commands that are entered are applied to the specified module.

TRACE

Traces the statements as it executes and suspends execution upon reaching a set
limit, when attention has been requested, or when terminal IO has been done.

WHEN

Suspends execution when a data value changes or when a specified condition occurs.

Entering Program Control Commands

A simple way to enter a breakpoint command is to scroll to the source line where you
want execution to pause, type the command in the line command area, and press Enter.
You will see an indication of the breakpoint in column 9 on the Source screen.

To set a breakpoint at a specific location or occurrence of a specified event, enter the
breakpoint command from the primary command line with a location operand or
condition for the stop. Refer to the XPEDITER/TSO and XPEDITER/IMS Reference Manual for
the valid location operands and parameters for a command.

If the primary command line is too small to list breakpoints or to stack commands, enter
the SET CMDSIZE command to expand the command line up to three lines.

Setting Before and After Breakpoints

The following commands set before breakpoints on every paragraph and after
breakpoints on statements 46 and 51:

BEFORE ALL PARA;AFTER 46 51

When you press Enter, the screen looks like Figure 5-3 on page 5-5.

Debugging Interactively 5-5
Figure 5-3. Result of Setting BEFORE ALL PARA and AFTER 4651 Breakpoints

The after breakpoint on statement 46 causes execution to pause after the READ statement
is executed and before the next statement is executed—statement 48 or 49, depending on
the AT END condition.The after breakpoint on statement 51 causes execution to pause
after the called module TRITST returns to the calling module TRIMAIN.

To set a breakpoint in a module that is not currently displayed, you must qualify the
breakpoint by entering the module name terminated with a colon (:) before the
breakpoint name.

Alternatively, you can first display the source of the program (SOURCE command) that
will be called later to establish module qualification, and then set breakpoints at the
desired locations. Refer to the XPEDITER/TSO and XPEDITER/IMS Reference Manual for
information about qualification rules for XPEDITER/TSO commands.

If the program is a member of a statically-linked module that is not yet loaded in
memory, bring the module into storage by entering the LOAD module-name command
first, then the SOURCE program-name command.

The following demonstrates using a qualified before breakpoint on paragraph
DETERMINE-TYPE in module TRITST, and using the SOURCE command to display the
program TRITST to verify that the before breakpoint is set correctly.

BEFORE TRITST:DETERMINE-TYPE;SOURCE TRITST

When you press Enter, the screen displayed is similar to Figure 5-4 on page 5-6.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 2 COMMAND(S) COMPLETED
 ** END **

------ --- Before TRIMAIN <>
000038 UNTIL OUT-OF-RECS = ’Y’.
000039 PERFORM ENDING-PARA.
000040 A GOBACK.
000041 B INIT-PARA.
000042 MOVE ZERO TO N-CNTR (1) N-CNTR (2) N-CNTR (3) N-CNTR (4).
000043 OPEN INPUT INFILE.
000044 MOVE ’N’ TO OUT-OF-RECS.
000045 B ANALYZE-NEXT-REC.
000046 A READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.
000049 IF OUT-OF-RECS = ’N’
000050 MOVE ZERO TO TRIANGLE-TYPE
000051 A CALL ’TRITST’ USING WORK-REC TRIANGLE-TYPE

5-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 5-4. Result of Entering Qualified Breakpoint

Enter SOURCE without a keyword or press PF6 (LOCATE *) to display the active program
(TRIMAIN) where execution is currently paused.

Using the INTERCEPT Command

The INTERCEPT command loads the specified module and sets before and after module
breakpoints. The command performs the function of the AFTER module breakpoint,
BEFORE module breakpoint, and the SOURCE commands combined. The following
demonstrates using the INTERCEPT command to access module TRIRPT.

INTERCEPT TRIRPT

When you press Enter, the screen displayed is similar to Figure 5-5.

Figure 5-5. Result of the INTERCEPT Command

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRITST MODULE: TRIMAIN COMP DATE: 07/28/1997 COMP TIME:14:41:59
 ** END **

------ --- Before TRIMAIN <>
000015 PROCEDURE DIVISION USING TST-REC
000016 TYPE-OF-TRIANGLE.
000017 VALIDATE-TRIANGLE.
000018 ADD A B GIVING A-N-B.
000019 ADD A C GIVING A-N-C.
000020 ADD B C GIVING B-N-C.
000021 IF (B-N-C NOT > A) OR (A-N-C NOT > B) OR (A-N-B NOT > C)
000022 MOVE 4 TO TYPE-OF-TRIANGLE.
000023 B DETERMINE-TYPE.
000024 IF TYPE-OF-TRIANGLE = 4
000025 NEXT SENTENCE
000026 ELSE
000027 IF (A = B) AND (B = C)
000028 MOVE 1 TO TYPE-OF-TRIANGLE
000029 ELSE

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: TRIRPT MODULE: TRIMAIN COMP DATE: 07/28/1997 COMP TIME:14:41:59
 ** END **

------ --- Before TRIMAIN <>
000042 B PROCEDURE DIVISION USING TABLE-OF-NAMES-N-CNTRS.
000043 OPEN OUTPUT OUTFILE.
000044 WRITE OUT-REC FROM HDR-LINE.
000045 WRITE OUT-REC FROM BLANK-LINE.
000046 PERFORM MOVE-FIELDS.
000047 PERFORM WRITE-DTLS
000048 VARYING TX FROM 1 BY 1
000049 UNTIL TX > 4.
000050 WRITE OUT-REC FROM BLANK-LINE.
000051 ADD T-CNTR (1) T-CNTR (2) T-CNTR (3) T-CNTR (4)
000052 GIVING DTL-CNTR.
000053 MOVE ’INPUT RECORDS’ TO DTL-TITLE.
000054 WRITE OUT-REC FROM DTL-LINE.
000055 CLOSE OUTFILE.
000056 A GOBACK.

Debugging Interactively 5-7
You can reset all the breakpoints you have entered since the beginning of your debugging
session by issuing the RETEST command to obtain a “fresh” copy of the program. Or, you
can resume execution of your program by issuing the GO command.

Resuming Execution With the GO Command

The GO command (PF12/PF24) is used to begin or resume execution of your program.
Your program will execute until a breakpoint is encountered, an abend is intercepted by
XPEDITER/TSO, or the end of the program is reached.

For example, in the program TRIMAIN, program execution paused when the before
breakpoint was encountered on the PROCEDURE DIVISION. Suppose you entered the
following command stream to set explicit after and before breakpoints:

AFTER 43 46;BEFORE 46

Figure 5-6 shows the two after breakpoints set on statement 43 and 46. The at sign (@) on
statement 46 indicates that the before breakpoint was also placed on the same line as the
after breakpoint.

Figure 5-6. Both Before and After Breakpoints Set on Line 46

When you press PF12 (GO), the execution arrow and active breakpoint field shown in
Figure 5-7 indicate that the program is paused after statement 43, the first breakpoint
reached during execution.

Figure 5-7. Result of Entering the GO Command

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: TRIRPT MODULE: TRIMAIN COMP DATE: 07/28/1997 COMP TIME:14:41:59

------ ---
000042 MOVE ZERO TO N-CNTR (1) N-CNTR (2) N-CNTR (3) N-CNTR (4).
000043 A OPEN INPUT INFILE.
000044 MOVE ’N’ TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
000046 @ READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 NEXT LOGICAL INSTRUCTION IS TRIMAIN:44
 ----+----1----+----2----+----3
SAME-> 01 IN-REC >
 ** END **

------ --- After TRIMAIN:43 <>
000034 B PROCEDURE DIVISION.
000035 MAIN-PARA.
000036 PERFORM INIT-PARA.
000037 PERFORM ANALYZE-NEXT-REC
000038 UNTIL OUT-OF-RECS = ’Y’.
000039 PERFORM ENDING-PARA.
000040 A GOBACK.
000041 INIT-PARA.
000042 MOVE ZERO TO N-CNTR (1) N-CNTR (2) N-CNTR (3) N-CNTR (4).
====>> A OPEN INPUT INFILE.
000044 MOVE ’N’ TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
000046 @ READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.

5-8 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
At this point, you could do any of the following:

• Set additional breakpoints

• Insert XPEDITER/TSO commands into the program

• Enter GO to resume execution

• Enter GO 1 to step through the execution line-by-line

• Enter EXIT to exit from the debugging session.

For this example, enter the RETEST command to obtain a “fresh” copy of the program.

Setting Conditional Breakpoints

The GO n, COUNT, WHEN, PAUSE, and TRACE commands are used to set breakpoints
when a specified condition occurs.

Using the GO n Command

Using the GO command without any arguments resumes execution until the next
breakpoint is reached, XPEDITER/TSO intercepts a program abend, or the program
completes execution. The GO command can also conditionally execute a specified
number of statements, paragraphs, or programs if an integer argument is entered with
the command. It can also trace each one if the TRACE parameter is entered with the
command. For example, entering

GO 5

executes five statements before pausing. Entering

GO 5 TRACE

executes five statements and traces each one, and entering

GO 5 PARAGRAPH

executes five paragraphs before pausing.

You can single-step through the code to understand the effect of executing each
statement by using the GO 1 command or pressing PF9. The GO 1 command stops at
paragraph and section names, as well as at statements that contain the IF construct or
any executable verbs. For this example, stop at statement 51.

When a GO 1 command is issued from any statement that transfers control to another
module (for example, CALL, GOBACK, EXIT PROGRAM), execution pauses when control
returns to the current module, unless a breakpoint is encountered within the called
module.

Figure 5-8 on page 5-9 shows the result of entering the GO 1 command when execution
was paused at the CALL to TRITST at statement 51 and no breakpoints are set in TRITST.

Debugging Interactively 5-9
Figure 5-8. Single Stepping Through Code Within the Current Module

Figure 5-9 demonstrates the result when execution was paused at the CALL to TRITST at
statement 51, with a before module breakpoint set at the beginning of TRITST. Then,
when you press PF9 or enter GO 1, execution starts in the TRITST module because a
BEFORE TRITST: breakpoint was set.

Figure 5-9. Stepping into a Called Module Using the GO 1 Command

To bring a new copy of your source into the display, enter RETEST.

Using the COUNT MAX Command

The COUNT command is used to monitor execution coverage by maintaining statement
execution counts. When the MAX keyword is used with the COUNT command, a
conditional breakpoint with a count limit is set. When the limit is reached, program
execution pauses and the message SPECIFIED EXECUTION MAX HAS BEEN REACHED

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1997 COMP TIME:14:41:59
COBOL TX > 1 INDEX
000029 01 TRIANGLE-TYPE > 4 DECIMAL
 ** END **

------ -- Before TRIMAIN:52 <>
000039 PERFORM ENDING-PARA.
000040 A GOBACK.
000041 INIT-PARA.
000042 MOVE ZERO TO N-CNTR (1) N-CNTR (2) N-CNTR (3) N-CNTR (4).
000043 OPEN INPUT INFILE.
000044 MOVE ’N’ TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
000046 READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.
000049 IF OUT-OF-RECS = ’N’
000050 MOVE ZERO TO TRIANGLE-TYPE
=====> CALL ’TRITST’ USING WORK-REC TRIANGLE-TYPE
000052 SET TX TO TRIANGLE-TYPE
000053 ADD 1 TO N-CNTR(TX)

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 BEFORE BREAKPOINT ENCOUNTERED

000010 01 TST-REC > 345
000014 01 TRIANGLE-TYPE > 0 DECIMAL
 ** END **

------ -- Before TRITST <>
=====> B PROCEDURE DIVISION USING TST-REC
000016 TYPE-OF-TRIANGLE
000017 VALIDATE-TRIANGLE.
000018 ADD A B GIVING A-N-B.
000019 ADD A C GIVING A-N-C.
000020 ADD B C GIVING B-N-C.
000021 IF (B-N-C NOT > A) OR (A-N-C NOT > B) OR (A-N-B NOT > C)
000022 MOVE 4 TO TYPE-OF-TRIANGLE.
000023 DETERMINE-TYPE.
000024 IF TYPE-OF-TRIANGLE = 4
000025 NEXT SENTENCE
000026 ELSE
000027 IF (A = B) AND (B = C)
000028 MOVE 1 TO TYPE-OF-TRIANGLE
000029 ELSE

5-10 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
is displayed. When the COUNT command is issued, a 7-digit counter appears in columns
74 through 80.

=====> ANALYZE-NEXT-REC. 0000003

The counter field can be typed over to set or remove the limit. For example, you can type
over the counter with a higher limit and press Enter to raise the preset maximum limit,
or you can zero out the counter and press Enter to remove the limit.

Using the WHEN Command

The WHEN command lets you stop execution when a program variable changes value or
when a specified event takes place. XPEDITER/TSO checks the condition after every
statement in the current module and pauses if the condition is met. The WHEN
command can be used with the following arguments:

Variable-name

Suspends execution when a statement altering the value of the variable is executed.
The variable content can be monitored by opening a Keep window and displaying
the variable content.

Condition

Suspends execution when the specified condition is met. You can enter a relational
condition using expressions such as the following:

WHEN WORK-REC = ’345’

WHEN TOTAL-SUM > 50000

WHEN WS-TRAN-KEY = HIGH-VALUES

WHEN OUT-OF-RECS CHANGES

For example, enter the following WHEN command to conditionally pause when the
index TX is changed, and enter the KEEP command on index TX to monitor the change:

WHEN TX;KEEP TX

Figure 5-10 shows the result of resuming execution by pressing PF12 (GO). Note that the
automatic keep function also keeps the value of TX and TRIANGLE-TYPE. However, these
values will disappear as the current line changes, but the KEEP command will
continuously monitor the value of TX. The DELETE WHEN command can be used to
remove the when condition.

Figure 5-10. Reaching the When Breakpoint

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 WHEN TX CHANGES
COBOL K TX > 3 INDEX
COBOL TX > 3 INDEX
000029 01 TRIANGLE-TYPE > 3 DECIMAL
 ** END **
------ --- After TRIMAIN:52 <>
000051 CALL ’TRITST’ USING WORK-REC TRIANGLE-TYPE
====>> SET TX TO TRIANGLE-TYPE
000053 ADD 1 TO N-CNTR(TX)
000054 ENDING-PARA.
000055 CLOSE INFILE.
000056 CALL ’TRIRPT’ USING NAME-N-CNTR-TABLE.

Debugging Interactively 5-11
Using the Inserted PAUSE Command

The PAUSE command can be dynamically inserted in the COBOL source code to set a
breakpoint following the execution of a statement. You can specify a condition in which
the pause breakpoint is to occur, by also inserting the IF...ELSE construct associated with
it.

The PAUSE command must be used in conjunction with the INSERT command. For
information on the usage convention of the INSERT command and the effect of inserting
a PAUSE command, refer to “Inserting Statements” on page 5-40.

Using the TRACE Command

The TRACE command is used to monitor the execution of specified statements or
paragraphs in your program. The specified statements or paragraph names are
highlighted as they are executed until a breakpoint is reached, an abend is intercepted by
XPEDITER/TSO, a terminal I/O is issued, or a keyboard interrupt is detected.

When the TRACE command is used with the MAX keyword, the tracing function pauses
when the number of executions reaches the preset limit. The default maximum limit is
25.

For example, if you enter the following command for a program that does not have any
breakpoints set and press PF12 (GO) to resume execution:

TRACE ALL STATEMENTS

the program will pause following the execution of 25 statements and display the message
25 TRACE BREAKPOINTS HAVE BEEN EXECUTED.

In order to override the default maximum limit, you must enter the MAX keyword with
an integer other than 25 as an argument with the TRACE command.

The tracing speed can be controlled by using the SET DELAY command prior to entering
the TRACE command. For instance, entering the following command will slow down the
execution speed to one second:

SET DELAY 1

You can interrupt tracing and suspend execution by using the Attention key. While
tracing is in progress, the keyboard is unlocked and, depending upon your terminal type
and network configuration, you may be able to use other keys to stop tracing. To end a
TRACE command, use DELETE TRACE.

Inspecting Program Data
XPEDITER/TSO lets you view the contents of variables defined in your program and the
data that is passed to the working storage and the linkage. The data is formatted by the
data type defined in your program.

Described in this section are the Automatic Keep function and the XPEDITER/TSO
commands KEEP, PEEK, MOVE, MEMORY, and GPREGS.

When you have XPEDITER for DB2 Extension and File-AID for DB2 installed, you can also
browse and edit DB2 table data during an XPEDITER/TSO session. Refer to “Using
XPEDITER for DB2 Extension” on page 5-44 for more information.

Displaying and Modifying Program Variables

XPEDITER/TSO automatically displays the values of data items referenced by the current
execution statement whenever execution halts. These values are displayed in a Keep

5-12 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
window at the top of the source display as shown in Figure 5-11 on page 5-12. Each time
the program halts, a new set of variables and their values are displayed.

Figure 5-11. Keep Window Displaying Automatic Keeps

If a variable of interest is not automatically kept, you can use an explicit KEEP command
or the PEEK command to temporarily display the contents of the variable.

The KEEP command is used when you want to continuously display the contents of a
variable. When the KEEP command is entered, XPEDITER/TSO continuously displays and
updates the data values in the Keep window until you delete the keep. XPEDITER inserts
a K in column 9 of the Keep window to differentiate between the explicitly kept items
and the automatically kept items.

Note: You have the option of creating a separate window called the Automatic Keep
window located at the bottom of the source display to hold the automatically
kept items. To do this, use the SET AUTOKEEP n command. Refer to the SET
command in the XPEDITER/TSO and XPEDITER/IMS Reference Manual for additional
information.

The PEEK command is used when you want to temporarily display the contents of a
variable. When the PEEK command is entered, XPEDITER/TSO scrolls to the DATA
DIVISION statement, displays the data values in a window on the right side of the screen,
and inserts a P in column 9 of the source. Some of the statement will be overlaid. When
you resume execution, the window is removed from the screen. Examples of the Keep
and Peek windows are shown in Figure 5-12 on page 5-13.

Notes:

1. Use the LOCATE * command (PF6), to return to the location where execution is
paused.

2. Use the DELETE command to remove a Keep or Peek display.

3. Use the SET AUTOKEEP OFF command to turn off the Automatic Keep function.

-------------------------- XPEDITER/TSO - SOURCE -------------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1996 COMP TIME:12:15:45
 ----+----1----+----2----+----3
SAME-> 01 IN-REC > 345

000030 01 WORK-REC > 345
 ** END **
------ -- Before TRIMAIN:46 <>
000042 MOVE ZERO TO N-CNTR (1) N-CNTR (2) N-CNTR (3) N-CNTR (4).
000043 OPEN INPUT INFILR.
000044 MOVE ’N’ TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC
=====> B READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.

Debugging Interactively 5-13
Figure 5-12. Keep and Peek Windows

Automatic Keep, Keep, and Peek windows display data in the same format: the statement
number where the variable is declared, the level number, the data name, the current
value, and the data type.

The level number appears only if the variable is declared in the source as a structure with
level numbers. Data values are displayed according to scaling and precision attributes.
Alphabetic items are displayed as characters, and numeric items are displayed as
DECIMAL, PACKED decimal (COMP-3), HALFWORD (COMP), FULLWORD (COMP),
INDEX, or FLOAT (COMP-1, COMP-2), depending on the internal representation. Tables
are shown by rows and columns, rather than in a linear fashion.

The Keep window is both scrollable and adjustable in size. The window becomes
scrollable when the data exceeds the size of the window. Scrolling is cursor sensitive; that
is, the cursor must be in the Keep window for vertical scrolling to take place. Move the
cursor to the window and use the PF7 (UP) and PF8 (DOWN) keys to scroll the data
vertically. Use the PF22 (DRIGHT) and PF23 (DLEFT) keys to scroll the Keep and Peek
windows horizontally. To ensure that the cursor remains in the Keep window while
scrolling, put the cursor on the segmented execution status line before using your scroll
keys.

You can set the size of the Source, the Keep window, and the Automatic Keep window.
The automatically kept items can, by default, be displayed in the Keep window at the top
of the screen or in a separate Automatic Keep window at the bottom of the screen. Refer
to the SET command in the XPEDITER/TSO and XPEDITER/IMS Reference Manual for
additional information.

The contents of variables displayed in a window can be changed by using the MOVE
command or by typing over them (implicit MOVE).

If the OCCURS field is not associated with an index or subscript, it can also be typed over
to display a different table entry. An occurrence modifier can also be appended to
increment or decrement through the table entries. Erasing the occurrence indicator (S=
or I=) will disassociate that position with its underlying variable. Refer to the KEEP
command Usage Notes section in the XPEDITER/TSO and XPEDITER/IMS Reference Manual
for more information about keeping tables and/or arrays and using the OCCURS field.

Using the KEEP Command

The KEEP command lets you continuously view the contents of program variables in a
window opened at the top of the source display. You can enter the KEEP primary
command with the name of the variable or you can enter the K line command either in
the Procedure Division (where the variable is referenced) or in the Data Division (where
the variable is defined). If the data exceeds 30 bytes, the field becomes scrollable, and it is
indicated by the MORE-> sign in the statement number area.Tables are formatted by each
dimension when the KEEP command is entered at the elementary level. If the OCCURS
field is not associated with an index or subscript, it can be typed over to browse through
the table by each entry. Also, a relative subscript can be appended to increment or

-------------------------- XPEDITER/TSO - SOURCE -------------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1996 COMP TIME:12:15:45

000030 K 01 WORK-REC > 345

------ -- After TRIMAIN <>
000028 01 OUT-OF-RECS PIC X.
000029 01 TRIANGLE-TYPE PIC 9.

000030 P 01 WORK-REC. > 345
000031 05 SIDE-A PIC 9(01).

5-14 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
decrement the occurrences. If the data displayed is a character data type, a column
template is displayed to show the length. The length of a numeric item, however, is a
function of the internal format.The alphabetic items are displayed as characters and the
numeric items are displayed as DECIMAL, PACKED decimal (COMP-3), HALFWORD
(COMP), FULLWORD (COMP), INDEX, or FLOAT (COMP-1, COMP-2), depending on the
internal representation. Tables will be shown by row and column, rather than in a linear
fashion.

The KEEP command has the following format:

KEEP (K line command)

Keeps the value of a variable.

KEEPE (KE line command)

Keeps the values of the elementary items that are part of a group item.

KEEPH (KH line command)

Keeps the hexadecimal values of a variable.

Use the DELETE command (DELETE KEEP or D line command) to remove the display
resulting from the KEEP commands.

Examples for using the KEEP command are given below. Note that an AFTER 53
breakpoint was entered in the TRIMAIN program before execution was resumed.

Figure 5-13 shows the result of entering the KEEP command for the variables WORK-REC
and N-N-C. For this example, the automatic Keep window was moved to the bottom of
the display with the SET AUTOKEEP 5 command so that all of the explicitly kept items
will show in the Keep window without scrolling.

Figure 5-13. Result of Entering the KEEP Command for WORK-REC and N-N-C

When a table element is displayed, XPEDITER/TSO inserts an OCCURS field. Figure 5-13
shows data name N-N-C in the Keep window. N-N-C has an OCCURS field with a value of
1. The KEEP command for N-N-C did not specify an occurrence, so the default of 1 was
used. The Autokeep window displays data name N-CNTR with an OCCURS field showing
a value of I=4.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 NEXT LOGICAL INSTRUCTION IS TRIMAIN:45
 1 OCCURS
 ----+----1----+----2----+
000024 K 05 N-N-C > EQUILATERAL TRIANGLES0000

000030 K 01 WORK-REC > 345
------ --- After TRIMAIN:53 <>
000052 SET TX TO TRIANGLE-TYPE
====>> A ADD 1 TO N-CNTR(TX)
000054 ENDING-PARA.
000055 CLOSE INFILE.
000056 CALL ’TRIRPT’ USING NAME-N-CNTR-TABLE.
****************************** BOTTOM OF MODULE ********************************

------ ---
 I=4 OCCURS
000027 10 N-CNTR > 0001 DECIMAL
COBOL TX > 4 INDEX
 ** END **

Debugging Interactively 5-15
The I=4 indicates that the current N-CNTR element being displayed is associated with an
index which currently points to the fourth element. The statement that encountered the
after breakpoint contained N-CNTR(TX), which generated this information.

If you want to display the currently referenced data in a table as the subscript or index
changes, enter the KEEP command using a data item qualified with the occurrence
variable.

For instance, a KEEP on N-CNTR displays the data value in the window defaulting to the
first occurrence (Figure 5-14 on page 5-15), whereas a KEEP on N-CNTR(TX) displays the
currently referenced data (Figure 5-15 on page 5-15).

Figure 5-14. Result of Entering the KEEP Command on a Table Element N-CNTR

Figure 5-15. Result of Entering the KEEP Command on a Table Element N-CNTR(TX)

The value in the OCCURS field (I=3) can be typed over with a numeric index value to
display a different table entry. Also, an occurrence modifier can be appended to the
disassociated occurrence field in order to browse through the table elements each time
Enter is pressed.

As shown in Figure 5-16, add a signed integer (for example, +1, -2) to increment or
decrement the index by a specified interval.

Figure 5-16. Browsing Through the Table Elements

The subscript and index boundaries are automatically checked when you are browsing
through the table. The boundary limit can be displayed by entering the SHOW INDEX
command. Figure 5-17 shows the boundary limits for N-N-C.

Figure 5-17. Result of the SHOW INDEX Command

 1 OCCURS
 000027 K 10 N-CNTR > 0000 DECIMAL

 I=3 OCCURS
 000027 K 10 N-CNTR > 0001 DECIMAL

 3+1 OCCURS
 ----+----1----+----2----+
 000024 K 05 N-N-C > SCALENE TRIANGLES 0001

------------------------------- XPEDITER/TSO - SHOW ----------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1996 COMP TIME: 12:15:45
------ -- Before TRIMAIN ->
****************************** TOP OF DATA *************************************
N-N-C IN TRIMAIN LIMIT 4
 INDEXED BY TX ENTRY 1
***************************** BOTTOM OF DATA ***********************************

5-16 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Using the PEEK Command

You can enter the PEEK primary command with the name of the variable or you can enter
the P line command either in the Procedure Division (where the variable is referenced) or
in the Data Division (where the variable is defined).

There are three forms of the PEEK command, each corresponding to a data display
format. The three forms are:

PEEK (P line command)

Displays the value of a variable.

PEEKE (PE line command)

Displays the values of the elementary items that are part of a group item.

PEEKH (PH line command)

Displays the hexadecimal values of a variable.

Examples of the commands and the resulting formats are described below.

Use the DELETE primary command or line commands to remove the display resulting
from the PEEK commands.

When the PEEK command is issued, the value of the variable is displayed in character or
numeric format. Tables are formatted by each dimension when the PEEK command is
entered at the elementary level. If the data displayed is a character data type, a column
template is displayed to show the length. The length of a numeric item, however, is a
function of the internal format.

Figure 5-18 shows the result of entering the PEEK command on WORK-REC in the
TRIMAIN program.

Figure 5-18. Result of Entering PEEK WORK-REC

Figure 5-19 shows the result of entering the PEEK command on N-N-C-TABLE in the
TRIMAIN program. Note the MORE-> sign in the statement number area and the column
template.

Figure 5-19. Result of Entering PEEK N-N-C-TABLE (Shows MORE>Sign and Column Template)

Figure 5-20 shows the result of entering the PEEK command on N-N-C in the TRIMAIN
program. Note the appearance of the OCCURS field. Because the OCCURS field is
disassociated, it can be increased or decreased by simply overtyping the value.

 000030 P 01 WORK-REC > 345
 000031 05 SIDE-A PIC 9(01).
 000032 05 SIDE-B PIC 9(01).
 000033 05 SIDE-C PIC 9(01).

 ----+----1----+----2----+----3
 MORE-> P 01 N-N-C-TABLE REDEF > EQUILATERAL TRIANGLES....ISOSC
 000024 05 N-N-C OCCURS 4 TIMES
 000025 INDEXED BY TX.
 000026 10 N-NAME PIC X(21).
 000027 10 N-CNTR PIC 9(04).

Debugging Interactively 5-17
Figure 5-20. Result of Entering PEEK N-N-C (Shows OCCURS Field and Column Template)

Figure 5-21 shows the result of entering the PEEK command on CHECK-SUM in a
program that contains counters and sums. Note that the numeric value is shown in
PACKED decimal format.

Figure 5-21. Result of Entering PEEK CHECK-SUM (Shows PACKED Decimal Format)

Figure 5-22 shows the result of entering the PEEK command on CHAR-PTR in a program
that contains halfwords. Note that the numeric value is shown in HALFWORD format.

Figure 5-22. Result of Entering PEEK CHAR-PTR (Shows HALFWORD Format)

When the PEEKE command is entered for a group level data name containing elementary
data items, the values for each elementary item are displayed, as shown in Figure 5-23,
where PEEKE was entered on WORK-REC in the TRIMAIN program.

Figure 5-23. Result of Entering PEEKE Command on the Group Level Data Item WORK-REC. (Shows
DECIMAL Format)

The PEEKH command displays the value of the variable in the hexadecimal format.
Figure 5-24 shows the result of entering the PEEKH command on the 05 data item SIDE-A
for the 01 data item WORK-REC in the TRIMAIN program.

Figure 5-24. Result of Entering PEEKH Command on the Group Data Item SIDE-A. (Shows
HEXADECIMAL Format)

 1 OCCURS
 ----+----1----+----2----+
 000024 P 05 N-N-C OCCUR > EQUILATERAL TRIANGLES....
 000025 INDEXED BY TX.
 000026 10 N-NAME PIC X(21).
 000027 10 N-CNTR PIC 9(04).

 000252 01 WS-SUMS.
 000254 P 05 CHECK-SUM > +2001474.01 PACKED

 000260 01 WS-POINTERS
 000262 P 05 CHAR-PTR > +093 HALFWORD

 000030 01 WORK-REC
 000031 P 05 SIDE-A PIC 9 > 3 DECIMAL
 000032 P 05 SIDE-B PIC 9 > 4 DECIMAL
 000033 P 05 SIDE-C PIC 9 > 5 DECIMAL

 000031 P 05 SIDE-A PIC 9 > 3 DECIMAL
 F
 3
 000032 05 SIDE-B PIC 9(01).
 000033 05 SIDE-C PIC 9(01).

5-18 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
The Log Entries for PEEK, KEEP, and Automatic KEEP

Every time a PEEK or KEEP command is entered, or an Automatic Keep displays data in
the Keep window, the command and the value of the data name are entered in the log.
The format of the log entry for both the PEEK and KEEP commands is similar.

To reduce the size of the log, you can turn off the log entries of the KEEP and PEEK
commands and Automatic Keeps by using the SET LOG KEEP OFF, SET LOG PEEK OFF,
and SET LOG AUTOKEEP OFF commands.

Since a displayed field is not scrollable in the log, large alphanumeric items wrap around
to the next line. The number of characters of data per line for an alphanumeric display is
determined by the value specified on the SET LOGSIZE command. The record length for
the log file can be set to either 80 or 133. If the LOGSIZE is 80, an alphanumeric display
wraps around after 30 characters per line. If the LOGSIZE is 133, the display wraps
around after 80 characters per line.

Figure 5-25 shows a log entry for the PEEK command entered for a table. The LOGSIZE is
set to 80. In this example, the values in the displayed table wrap around every 30 bytes
until the entire table of 100 bytes is displayed.

Figure 5-25. The Log Entry Following Execution of a PEEK Command

Unless SET HEXMODE is specified as ON, the log entry of a displayed field containing
nonrepresentable characters includes the symbol used to represent them—either periods
or the character designated by the SET NONDISP command.

When the SET HEXMODE command is on, nonrepresentable characters are displayed in
hexadecimal format in the log. SET HEXMODE ON ensures that sufficient information is
provided for a variable containing unprintable characters. All invalid numeric data (e.g.,
uninitialized packed data) is represented by question marks (?).

When an after, before, trace, when, or GO 1 breakpoint is encountered and the value of
one or more of the kept variables changes, all kept variables are entered in the log. The
variables whose values have changed are listed first, followed by the data names that
have not changed. If none of the values of the kept variables change, a log entry is not
made.

-------------------------------- XPEDITER/TSO - LOG ----------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1996 COMP TIME:12:15:45
-- Before TRIMAIN ->
 XPED TSO SPF
 TEST TRIMAIN
XPD4170 RA417 CEE COBOL TRAP OPTION WAS FORCED TO OFF
*** TRIMAIN FROM XT.SLS61.LINKLIB LINK 07/28/1996
 BEFORE TRIMAIN::TRIMAIN:
 AFTER TRIMAIN::TRIMAIN:
PAUSE BEFORE TRIMAIN
BEFORE BREAKPOINT ENCOUNTERED
 PEEK NAME-N-CNTR-TABLE
 ----+----1----+----2----+----3
 000014 01 NAME-N-CNTR-TABLE > EQUILATERAL TRIANGLES....ISOSC
 ----+----4----+----5----+----6
 > ELES TRIANGLES SCALENE TR
 ----+----7----+----8----+----9
 > IANGLES INVALID TRIANGL
 ----+---10
 > ES
****************************** BOTTOM OF DATA ********************************

Debugging Interactively 5-19
Using the MOVE Command

You can change the contents of program variables at any time using the MOVE
command. MOVE lets you move either a data name or a literal into another data name.

There are three ways to enter the MOVE command:

1. By typing over a displayed or kept field with a new value, causing an implicit move.
2. Directly as a primary command.
3. In conjunction with the INSERT command.

The log entry for all three MOVE command formats is the same.

The following figures show examples of entering the MOVE command in different ways
to produce the same result. The examples will use Figure 5-26 in which the variable
WORK-REC is displayed.

Figure 5-26. Displaying Variable WORK-REC Prior to Typing Over Value

Example 1 — Typing Over Value in Variable Field to Cause an Implicit Move:

In Figure 5-27, the displayed value (345) for the variable WORK-REC is typed over with
the new value (999), causing an implicit move.

Figure 5-27. Typing Over Value for Variable WORK-REC

Example 2 — Entering MOVE as a Primary Command:

If you enter MOVE '345’ TO WORK-REC in the primary command line, the result is an
explicit move. As shown in Figure 5-28 on page 5-20, the literal value (345) is moved to
the data field for WORK-REC and the value of WORK-REC is changed from 999 to 345.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1996 COMP TIME: 12:15:45
 -
000028 01 OUT-OF-RECS > N
 ** END **

------ -- Before TRIMAIN:49 <>

000030 P 01 WORK-REC. > 345
000031 05 SIDE-A PIC 9(01).
000032 05 SIDE-B PIC 9(01).
000033 05 SIDE-C PIC 9(01).
000034 B PROCEDURE DIVISION.
000035 MAIN-PARA.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1996 COMP TIME: 12:15:45
 -
000028 01 OUT-OF-RECS > N
 ** END **

------ -- Before TRIMAIN:49 <>

000030 P 01 WORK-REC. > 999
000031 05 SIDE-A PIC 9(01).
000032 05 SIDE-B PIC 9(01).
000033 05 SIDE-C PIC 9(01).
000034 B PROCEDURE DIVISION.
000035 MAIN-PARA.

5-20 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 5-28. An Example of MOVE Entered as a Primary Command

Example 3 — Using the MOVE Command in Conjunction With the INSERT
Command:

In Figure 5-29, the I (Insert) line command was entered on line 49 to open up a line on
which to insert the MOVE command. A before breakpoint is also being entered on line
50, following the inserted MOVE command.

Figure 5-29. Inserting MOVE Command

When you press Enter, a before breakpoint is indicated for line 50, as shown in Figure 5-
30.

Figure 5-30. Before Breakpoint Set on Line 50

Then, when you press PF12 (GO), execution is paused following the inserted MOVE
command as shown in Figure 5-31 on page 5-21.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1996 COMP TIME: 12:15:45
 -
000028 01 OUT-OF-RECS > N
 ** END **

------ -- Before TRIMAIN:49 <>

000030 P 01 WORK-REC > 345
000031 05 SIDE-A PIC 9(01).
000032 05 SIDE-B PIC 9(01).
000033 05 SIDE-C PIC 9(01).
000034 B PROCEDURE DIVISION.
000035 MAIN-PARA.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1996 COMP TIME: 12:15:45
 ** END **

------ --- Before TRIMAIN <>
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.
000049 IF OUT-OF-RECS = ’N’
’’’’’’ move ’999’ to work-rec
B 050 MOVE ZERO TO TRIANGLE-TYPE
000051 CALL ’TRITST’ USING WORK-REC TRIANGLE-TYPE

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 1 COMMAND(S) COMPLETED
 ** END **

------ --- Before TRIMAIN <>
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.
000049 IF OUT-OF-RECS = ’N’
’’’’’’ MOVE ’999’ TO WORK-REC
000050 B MOVE ZERO TO TRIANGLE-TYPE
000051 CALL ’TRITST’ USING WORK-REC TRIANGLE-TYPE

Debugging Interactively 5-21
Figure 5-31. Source Display After GO is Entered

Enter KEEP for WORK-REC. The value indicated on the inserted MOVE command is
displayed in the Keep window as shown in Figure 5-32.

Figure 5-32. Result of an Inserted MOVE Command

Displaying and Modifying Memory and Registers

Storage areas and general-purpose registers can be accessed if you wish to debug at the
hexadecimal level. The MEMORY command lets you view and modify the storage area
starting from a specified location. A full screen memory display is shown in the dump
format, and any unprotected areas can be typed over to alter the storage content. The
GPREGS command lets you view and modify the registers. A register window is displayed
at the bottom of the screen, and you can type over the hexadecimal values to modify the
registers. The TOGGLE command permits you to switch back and forth between the
storage screen (generated from the MEMORY command) and the listing screen (general-
purpose registers opened by using the GPREGS command).

Using the MEMORY Command

The MEMORY command entered without any arguments displays the storage area,
starting from the beginning of the currently displayed program. For example, entering
the following command from the primary command line of the TRIMAIN program
displays the Memory Display screen shown in Figure 5-33 on page 5-22:

MEMORY

The fourth line on the Memory Display screen contains the base address and a column
template that starts with zero and continues to hexadecimal F. The offsets below the base
address list the displacement from the start of the storage area.

Press PF3 (END) to return to the Source display screen.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 BEFORE BREAKPOINT ENCOUNTERED
000029 01 TRIANGLE-
TYPE > ?? INVALID DECIMAL
 ** END **

------ -- Before TRIMAIN:50 <>
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.
000049 IF OUT-OF-RECS = ’N’
’’’’’’ MOVE ’999’ TO WORK-REC
=====> B MOVE ZERO TO TRIANGLE-TYPE
000051 CALL ’TRITST’ USING WORK-REC TRIANGLE-TYPE

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1996 COMP TIME: 12:15:45

000030 K 01 WORK-REC > 999
000029 01 TRIANGLE-TYPE > ?? INVALID DECIMAL
 ** END **
------ -- Before TRIMAIN:50 <>
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.
000049 IF OUT-OF-RECS = ’N’
’’’’’’ MOVE ’999’ TO WORK-REC
=====> B MOVE ZERO TO TRIANGLE-TYPE
000051 CALL ’TRITST’ USING WORK-REC TRIANGLE-TYPE

5-22 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 5-33. Result of Entering the MEMORY Command

The MEMORY command can be entered with indirect register addressing to specify a
location. For example, the following command displays memory starting from the
location pointed to by the 24-bit mode address in register 13, as seen in Figure 5-34:

MEMORY R13%

Figure 5-34. Result of Entering MEMORY R13%

Also, you can use arithmetic expressions such as the following to access storage, as
shown in Figure 5-35 on page 5-23.

MEMORY R9%+4

------------------------------ XPEDITER/TSO - MEMORY ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1996 COMP TIME: 12:15:45
-- Before TRIMAIN --
BASE = 00093038 0 - 2 - 4 - 6 - 8 - A - C - E - = 0-2-4-6-8-A-C-E-
 ******************************* TOP OF DATA *********************************
 000000 ===> 90ECD00C 185D05F0 4580F010 E3D9C9D4 = ..}..).0..0.TRIM
 000010 ===> C1C9D540 E5E2D9F1 0700989F F02407FF = AIN VSR1....0...
 000020 ===> 96021034 07FE41F0 000107FE 0009E7DA = 0......X.
 000030 ===> 0009E038 0009E038 0009E4E0 0009E278 = ..\...\...U\..S.
 000040 ===> 0009E544 0009E79A 00000000 00000000 = ..V...X.........
 000050 ===> 00000000 00000000 00000000 00000000 =
 000060 ===> 00000000 00000000 00000000 00000000 =
 000070 ===> 00000000 00000000 00000000 00000000 =
 000080 ===> 00000000 00000000 F1F24BF5 F44BF2F6 = 12.54.26
 000090 ===> E2C5D740 F2F86B40 F1F9F9F4 00000000 = SEP 28, 1994....
 0000A0 ===> C5D8E4C9 D3C1E3C5 D9C1D340 E3D9C9C1 = EQUILATERAL TRIA
 0000B0 ===> D5C7D3C5 E2000000 00C9E2D6 E2C3C5D3 = NGLES....ISOSCEL
 0000C0 ===> C5E240E3 D9C9C1D5 C7D3C5E2 40400000 = ES TRIANGLES ..
 0000D0 ===> 0000E2C3 C1D3C5D5 C540E3D9 C9C1D5C7 = ..SCALENE TRIANG
 0000E0 ===> D3C5E240 40404000 000000C9 D5E5C1D3 = LES INVAL
 0000F0 ===> C9C440E3 D9C9C1D5 C7D3C5E2 40404040 = ID TRIANGLES
 000100 ===> 00000000 00000000 00000000 00000000 =
 000110 ===> 00000000 00000000 00000000 00000000 =

------------------------------ XPEDITER/TSO - MEMORY ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1996 COMP TIME: 12:15:45
-- Before TRIMAIN --
BASE = 00093278 0 - 2 - 4 - 6 - 8 - A - C - E - = 0-2-4-6-8-A-C-E-
 ******************************** TOP OF DATA ********************************
 000000 ===> 00300000 00096B68 00000000 00000000 = ,.........
 000010 ===> 00000000 00000000 00000000 00000000 =
 000020 ===> 00000000 00000000 00000000 00000000 =
 000030 ===> 00000000 00000000 00000000 00000000 =
 000040 ===> 00000000 00000000 3102A04B 00000000 =
 000050 ===> 00000000 00093544 00000000 00000000 =
 000060 ===> 00000000 00093880 00093A6E 00000000 = >....
 000070 ===> 50093854 8008BBFC 0005C5F8 00093786 = &.........E8....
 000080 ===> 50093838 000930D8 00000000 00093488 = &......Q........
 000090 ===> 000937DA 00093038 00093038 000934E0 = \
 0000A0 ===> 00000000 00000000 00000000 00000000 =
 0000B0 ===> 00000000 00000000 00000000 00000000 =
 0000C0 ===> 00000000 00000000 00000000 00000000 =
 0000D0 ===> 00000000 00000000 00000000 00000000 =
 0000E0 ===> 00000000 00000000 00000000 00000000 =
 0000F0 ===> 00000000 00000000 00000000 00000000 =
 000100 ===> 00000000 00000000 00000000 00000000 =
 000110 ===> 00000000 00000000 00000000 00000000 =

Debugging Interactively 5-23
Figure 5-35. Result of Entering MEMORY R9%+4

Using the GPREGS Command

The GPREGS command opens a window and displays the 16 general-purpose registers at
the bottom of the screen. Figure 5-36 shows the result of entering the GPREGS command
for the TRIMAIN program. The displayed hexadecimal values can be typed over to change
the register contents.

Figure 5-36. Result of Entering the GPREGS Command

The register window can be removed from display by entering the following command:

GPREGS OFF

Using the TOGGLE Command

The TOGGLE command lets you switch from one panel display to another. For COBOL,
you may move back and forth between the Listing screen and the Storage screen. It may
be beneficial for you to define a specific PF KEY to efficiently utilize the toggle
functionality.

Analyzing Program Logic
This section describes the built-in dynamic analysis features that let you identify
program structure, trace the flow of control, monitor execution coverage, and review the
execution path. These features assist you in understanding what the program does and

------------------------------ XPEDITER/TSO - MEMORY ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 07/28/1996 COMP TIME: 12:15:45
-- Before TRIMAIN --
BASE = 000937DA 0 - 2 - 4 - 6 - 8 - A - C - E - = 0-2-4-6-8-A-C-E-
 ******************************* TOP OF DATA *********************************
 000004 ===> D04847E0 F0165800 B048982D B05058E0 = }..\0........&.\
 000014 ===> D05407FE 9620D048 41600004 4110C000 = }.....}..-....{.
 000024 ===> 4170C003 05505840 10001E4B 50401000 = ..{..&.& ..
 000034 ===> 87165000 4110C028 4170C02F 05505840 = ..&...{...{..&.
 000044 ===> 10001E4B 50401000 87165000 41600008 = &&..-..
 000054 ===> 4110C030 4170C047 05505840 10001E4B = ..{...{..&.
 000064 ===> 50401000 87165000 4180D200 41600004 = &&...K..-..
 000074 ===> 4170D20F 05105800 80001200 47801010 = ..K.............
 000084 ===> 1E0B5000 80008786 10005860 D2045870 = ..&........-K...
 000094 ===> D200D217 D238C030 58F0C008 05EF002C = K.K.K.{..0{.....
 0000A4 ===> 000158E0 D05407FE 00008000 00000009 = ...\}...........
 0000B4 ===> 3278C9D3 C2D6D5E3 D9F00000 00000000 = ..ILBONTR0......
 0000C4 ===> 00000000 00000000 00000000 00000000 =
 0000D4 ===> 00000000 00000000 00000000 00000000 =
 0000E4 ===> 00000009 426A0000 00000000 00000000 = |..........
 0000F4 ===> 00000000 00000000 00000000 00000000 =
 000104 ===> 00000000 00000000 00000000 00000000 =
 000114 ===> 00000000 00000000 00000000 00000000 =

000045 ANALYZE-NEXT-REC.
000046 READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.
000049 IF OUT-OF-RECS = ’N’
000050 MOVE ZERO TO TRIANGLE-TYPE
 GPREGS R0 ==> 70043C2E R1 ==> 50043FCE R2 ==> 00043210 R3 ==> 00043BB8
 R4 ==> 00043E8A R5 ==> 50043FB2 R6 ==> 00043790 R7 ==> 00000000
 R8 ==> 00043B40 R9 ==> 00043F54 R10 ==> 000436F0 R11 ==> 000436F0
 R12 ==> 00043B98 R13 ==> 00043930 R14 ==> 00043C2C R15 ==> 0009E5DE

5-24 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
how to reach a certain location in the program. The XPEDITER/TSO commands covered
here are FIND, TRACE, SHOW PREVIOUS, COUNT, MONITOR, REVERSE, and RESUME.

If you have XPEDITER for DB2 Extension and File-AID for DB2, you can analyze how SQL
statements execute with the EXPLAIN command. Refer to “Using XPEDITER for DB2
Extension” on page 5-44 for more information.

Identifying Program Structure

The XPEDITER/TSO FIND command allows you to search data relationships and program
structures, in addition to locating character strings. For instance, the FIND command can
process data names and identify COBOL statements that directly or indirectly affect or
refer to the data names. COBOL-structure keywords such as ALTER, CONDITION, I/O,
etc. are processed to query COBOL statements that have the potential to modify data,
conditional constructs, and I/O statements. With the highlighting effect and the
capability to suppress statements that do not qualify for the search category, the source
display screen can turn into a representation of “data flow cross reference” and a “high-
level structure.”

One example of the COBOL sensitivity of FIND is the ability to find data names, aliases
and the use of the data name. Some of the keywords related to finding data names are:

DEFine

Data name is defined.

MODify

Value of the data name has changed or has the potential for change.

USE

Value of the data name is used, but not modified.

REFerence

Data name is defined, modified, or used.

The default is REFERENCE. When FIND is issued on a data name with no additional
keywords, all references to the data name are found.

Finding All References for a Data Name

Enter the following command to find the data name SUBS:

FIND SUBS

Note: The SET KEEP MAX 5 command was used to suppress the Keep window when no
keeps are explicitly requested, and the SET AUTOKEEP OFF command was used to
turn off the display of automatically kept data for all the FIND examples shown
in this section.

The response to the FIND SUBS command is illustrated in Figure 5-37 on page 5-25. The
message line indicates the number of times the data name SUBS is referenced in the
program. There are 49 data references for SUBS: It is defined once, used 30 times, and
modified 18 times. Each reference for the data name SUBS is highlighted and one of the
following messages appear in the message area to the right of the found line: DEF, USE, or
MOD.

Note: Defines will be found first. All defines are found in the Data Division because this
is the section where the data names are defined. The uses and modifications of a
data name will be found in the Procedure Division.

Debugging Interactively 5-25
To find the next occurrence of SUBS, press PF5 or type FIND on the command line as
shown in Figure 5-37, move the cursor down past the line in which SUBS is defined, and
press Enter.

Figure 5-37. Result of Entering FIND SUBS

Figure 5-38 shows the result of the repeat FIND. The DEF, MOD, and USE messages
remain on the display until execution begins or a new FIND command is issued. Note
that entry of a repeat FIND does not remove these messages.

Figure 5-38. Result of a Repeat FIND

The remaining keywords that relate to finding data names are the following two groups—
ALIAS, NOREDEFINE, NOALIAS, and DIRECT and INDIRECT. They are defined below and
illustrated in examples on the following pages.

ALIas

Other references (such as redefined or group level names) to the same storage
location are found.

NORedefine

Other references (except redefines) to the same storage location are found.

NOAlias

Alias names are not found; default.

DIRect

Only direct references to the data name are found; default.

INDirect

All references to the data name, its aliases (if indicated), and all places a data value is
passed to or from the data name and its aliases are found.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> FIND SCROLL ===> CSR
 49 Data Refs: 1 DEF, 30 USES, 18 MODS found for SUBS
------ -- Before IMSPROG2 <>
000084 * SUBSCRIPT FOR INDEXING ALONG INPUT MESSAGE LINE ITEMS
000085 77 SUBS PIC S9(3) COMP. DEF
000087 * SUBSCRIPT FOR INDEXING ALONG SPA LINE ITEMS
000089 77 SPA-SUBS PIC S9(3) COMP.
000090 *
000091 * DL/I CALL FUNCTIONS
000092 *
000093 77 GU-FUNC PIC X(4) VALUE ’GU ’.
000094 77 GN-FUNC PIC X(4) VALUE ’GN ’.
000095 77 ISRT-FUNC PIC X(4) VALUE ’ISRT’.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: IMSPROG2 MODULE: IMSPROG2 COMP DATE: 09/28/1996 COMP TIME: 14:41:59
------ -- Before IMSPROG2 <>
000653 MOVE MSG12A TO OUT-MSG
000654 ELSE MOVE NEXT-SHIP-DETAIL TO SUBS MOD
000655 PERFORM UNPROTECT-SHIP-LINES
000656 UNTIL SUBS = 3. USE
000657 UNPROTECT-SHIP-LINES.
000658 MOVE UNPROT-ATTR-NUM TO FE20SNR-ATTR (SUBS) USE
000659 FE20SDAT-ATTR (SUBS), SHIPSTAT-ATTR (SUBS). 2 USE
000660 MOVE UNPROT-ATTR-ALPH TO FE20SMET-ATTR (SUBS). USE
000661 ADD 1 TO SUBS. MOD
000662 CHANGE-ORDER.

5-26 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Finding Aliases of a Data Name

The data name N-CNTR has the aliases N-N-C, N-N-C-TABLE, and NAME-N-CNTR-TABLE.
Enter the following command to find all aliases of the data name N-CNTR:

FIND N-CNTR ALIAS

The result of this FIND command is shown in Figure 5-39, where N-N-C-TABLE and N-N-
C are aliases of N-CNTR because they are both group data names under which N-CNTR is
defined. NAME-N-CNTR-TABLE is an alias of N-CNTR because N-N-C-TABLE redefines
NAME-N-CNTR-TABLE. That is, N-N-C, N-N-C-TABLE, and NAME-N-CNTR-TABLE all have
the same storage location as N-CNTR, as seen in the Data Division.

Enter the command DOWN;FIND, so the screen will be scrolled before a repeat FIND is
issued.

Figure 5-39. Result of Finding N-CNTR With DIRECT and ALIAS

The display scrolls to show the uses and modifications of N-CNTR in the Procedure
Division. When you look at Figure 5-40 on page 5-27, notice that the number of times N-
CNTR is used and modified on the line is indicated on statement 42.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> DOWN;FIND SCROLL ===> CSR
 10 Data Refs: 4 DEFS, 6 MODS found for N-CNTR
------ --- Before TRIMAIN <>
000013 WORKING-STORAGE SECTION.
000014 01 NAME-N-CNTR-TABLE DEF
000015 05 FILLER PIC X(21) VALUE ’EQUILATERAL TRIANGLES’.
000016 05 FILLER PIC X(04).
000017 05 FILLER PIC X(21) VALUE ’ISOCELES TRIANGLES’.
000018 05 FILLER PIC X(04).
000019 05 FILLER PIC X(21) VALUE ’SCALENE TRIANGLES’.
000020 05 FILLER PIC X(04).
000021 05 FILLER PIC X(21) VALUE ’INVALID TRIANGLES’.
000022 05 FILLER PIC X(04).
000023 01 N-N-C-TABLE REDEFINES NAME-N-CNTR-TABLE. DEF
000024 05 N-N-C OCCURS 4 TIMES DEF
000025 INDEXED BY TX.
000026 10 N-NAME PIC X(21).
000027 10 N-CNTR PIC 9(04). DEF
000028 01 OUT-OF-RECS PIC X.
000029 01 TRIANGLE-TYPE PIC 9.
000030 01 WORK-REC.
000031 05 SIDE-A PIC 9(01).
000032 05 SIDE-B PIC 9(01).

Debugging Interactively 5-27
Figure 5-40. Scrolling to Modifications of N-CNTR

Finding Indirect References to a Data Name

In all of the examples that have been discussed so far, the FIND default of DIRECT was
used. When INDIRECT is specified for a data name, all statements directly or indirectly
affected by the data name are found. The following example illustrates how INDIRECT is
used and the results.

A good way to view indirect references is to use the EXCLUDE keyword with the FIND
command. The EXCLUDE keyword excludes from view all lines that were not found. For
example, issue the following command for the data name IN-PASS1:

FIND IN-PASS1 IND X

The results of this FIND command are shown in Figure 5-41 where all references to IN-
PASS1 are displayed. To display the next level of indirect references, enter FIND
INDIRECT or press the PF17 key.

Figure 5-41. Finding IN-PASS1 INDIRECT With EXCLUDE

Each time FIND INDIRECT is entered, a new level of indirect references is found. When
you look at Figure 5-42 on page 5-28, notice that SE0ORDR1 references are highlighted.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 09/28/1996 COMP TIME: 14:41:59
------ --- Before TRIMAIN <>
=====> B PROCEDURE DIVISION.
000035 MAIN-PARA.
000036 PERFORM INIT-PARA.
000037 PERFORM ANALYZE-NEXT-REC
000038 UNTIL OUT-OF-RECS = ’Y’.
000039 PERFORM ENDING-PARA.
000040 A GOBACK.
000041 INIT-PARA.
000042 MOVE ZERO TO N-CNTR (1) N-CNTR (2) N-CNTR (3) N-CNTR (4) 4 MOD
000043 OPEN INPUT INFILE.
000045 ANALYZE-NEXT-SEC.
000046 READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.
000049 IF OUT-OF-RECS = ’N’
000050 MOVE ZERO TO TRIANGLE-TYPE
000051 CALL ’TRITST’ USING WORK-REC TRIANGLE-TYPE
000052 SET TX TO TRIANGLE-TYPE
000053 ADD 1 TO N-CNTR (TX). MOD

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> FIND IND SCROLL ===> CSR
 3 Data Refs: 1 DEF, 2 USES found for IN-PASS1
------ -- Before IMSPROG2 <>
********************************** TOP OF MODULE ******************************
- 221 LINES NOT DISPLAYED
000232 02 IN-PASS1 PIC X(16). DEF
- 336 LINES NOT DISPLAYED
000574 MOVE IN-PASS1 TO SE0ORDR1 USE
- 27 LINES NOT DISPLAYED
000604 MOVE IN-PASS1 TO SE0ORDR1 USE
- 385 LINES NOT DISPLAYED
******************************** BOTTOM OF MODULE ******************************

5-28 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 5-42. FIND INDIRECT - First Level of Indirection

When FIND INDIRECT (PF17) is entered again, all references to IN-PASS1, SE0ORDR1,
and SPA-PASS1 are found (Figure 5-43).

Figure 5-43. FIND INDIRECT - Second Level of Indirection

When no more levels of indirect references are found, the following message is displayed
in the message line:

END OF INDIRECT SEARCH

Enter END (PF3) to reset all excluded lines in your program.

Note: The EXCLUDE keyword can be used on any FIND command. When it is used,
XPEDITER/TSO excludes all lines before executing the FIND.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
 7 Data Refs: 1 DEF, 2 USES, 4 MODS found for IN-PASS1
------ -- Before IMSPROG2 <>
********************************** TOP OF MODULE ******************************
- 221 LINES NOT DISPLAYED
000232 02 IN-PASS1 PIC X(16).
- 109 LINES NOT DISPLAYED
000343 01 SE0ORDR1. DEF
- 226 LINES NOT DISPLAYED
000574 MOVE IN-PASS1 TO SE0ORDR1 MOD
- 2 LINES NOT DISPLAYED
000577 MOVE SE0ORDR1 TO SPA-PASS1, USE
- 3 LINES NOT DISPLAYED
000582 MOVE SPA-PASS1 TO SE0ORDR1 MOD
- 20 LINES NOT DISPLAYED
000604 MOVE IN-PASS1 TO SE0ORDR1 MOD
- 2 LINES NOT DISPLAYED
000607 MOVE SE0ORDR1 TO SPA-PASS 1, USE
- 2 LINES NOT DISPLAYED
000611 MOVE SPA-PASS1 TO SE0ORDR1 MOD
******************************* BOTTOM OF MODULE ******************************

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
 5 Data Refs: 1 DEF, 2 USES, 2 MODS found for IN-PASS1
------ -- Before IMSPROG2 <>
********************************** TOP OF MODULE ******************************
- 221 LINES NOT DISPLAYED
000232 02 IN-PASS1 PIC X(16).
- 60 LINES NOT DISPLAYED
000293 02 SPA-PASS1 DEF
- 48 LINES NOT DISPLAYED
000343 01 SE0ORDR1.
- 226 LINES NOT DISPLAYED
000574 MOVE IN-PASS1 TO SE0ORDR1
- 2 LINES NOT DISPLAYED
000577 MOVE SE0ORDR1 TO SPA-PASS1, MOD
- 3 LINES NOT DISPLAYED
000582 MOVE SPA-PASS1 TO SE0ORDR1 USE
- 20 LINES NOT DISPLAYED
000604 MOVE IN-PASS1 TO SE0ORDR1
- 2 LINES NOT DISPLAYED
000607 MOVE SE0ORDR1 TO SPA-PASS1, MOD
- 2 LINES NOT DISPLAYED
000611 MOVE SPA-PASS1 TO SE0ORDR1 USE
******************************* BOTTOM OF MODULE *******************************

Debugging Interactively 5-29
Finding COBOL Structures

FIND is also able to find COBOL structures using keywords in place of a character string.
When a COBOL-structure keyword is entered instead of a data name, XPEDITER/TSO
highlights all lines in the program where the COBOL structure is used.

Note: Currently, EXEC SQL WHENEVER and EXEC SQL DECLARE statements are not
found when you issue the FIND SQL command.

The COBOL-structure keywords are listed below. See Appendix A in the XPEDITER/TSO and
XPEDITER/IMS Reference Manual for descriptions and source relationships.

ALTer CICS INput PARAgraph
BRAnch CONDition IO SQL
CALL DLI OUTput

Using FIND With the COBOL-Structure INPUT

Enter the following command to find all INPUT statements in the IQTEST program:

FIND INPUT

The first input statement found is a READ statement, as shown in Figure 5-44. The line
that contains the input verb is highlighted. If the verb statement extends over multiple
lines, multiple lines are highlighted, as shown. To locate the next input statement, press
PF5 (repeat FIND).

Figure 5-44. Result of FIND With COBOL-Structure Keyword INPUT

The next input statement is also a READ statement as shown in Figure 5-45.

Figure 5-45. Result of a Repeat FIND for INPUT Keyword

When you enter FIND and no more INPUT statements are found, the following message
is displayed in the message area:

BOTTOM OF DATA REACHED

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> FIND SCROLL ===> CSR
 2 INPUT found
------ -- Before IQTEST <>
=====> B PROCEDURE DIVISION.
000131 A000-CREATE-IQ-TEST-REPORT.
000132 OPEN INPUT IQ-TEST-FILE
000133 OUTPUT IQ-TEST-REPORT-FILE.
000134 READ IQ-TEST-FILE
000135 AT END
000136 MOVE ’NO’ TO ARE-THERE-MORE-RECORDS.
000137 MOVE IN-SCHOOL-NO TO INPUT-IQ.
000138 IF THERE-IS-A-RECORD

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: IQTEST MODULE: IQTEST COMP DATE: 09/28/1996 COMP TIME: 14:41:59
------ -- Before IQTEST <>
000199 MOVE SPACES TO DETAIL-LINE.
000200 READ IQ-TEST-FILE
000201 AT END
000202 MOVE ’NO’ TO ARE-THERE-MORE-RECORDS.
000203 B005-PROCESS-DETAIL-RECS-EXIT.

5-30 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
The input statements remain highlighted until execution begins or a new FIND
command is issued.

Using FIND With the COBOL-Structure DLI and EXCLUDE Keywords

In this example, the FIND command is entered with the DLI and EXCLUDE keywords.
The DLI keyword finds not only all lines in the OSDLI program that say EXEC DLI, but in
each case, the entire DLI statement. The EXCLUDE keyword displays only the lines
containing the requested information; all other lines are excluded from display. Enter the
following command:

FIND DLI X

When you look at Figure 5-46, you can see at a glance where the DLI statements are, what
types they are, and all parameters on each statement.

Figure 5-46. Result of FIND DLI With EXCLUDE

Now, you must enter a NOLINES command to eliminate the message line xx LINES NOT
DISPLAYED from the display. As illustrated in Figure 5-47 on page 5-31, the resulting
display can now accommodate additional found lines.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> NOL SCROLL ===> CSR
PROGRAM: OSDLI MODULE: OSDLI COMP DATE: 09/28/1996 COMP TIME: 14:41:59
------ --- Before OSDLI <>
******************************** TOP OF MODULE ********************************
- - - - 191 LINES NOT DISPLAYED
000201 EXEC DLI SCHD
000202 PSB(TRIDATA)
000203 END-EXEC.
- - - - 46 LINES NOT DISPLAYED
000256 EXEC DLI GET UNIQUE
000257 SEGMENT(VALID) SEGLENGTH(4)
000258 INTO(WORK-ROOT-SEG)
000259 KEYS(WT-KEY-SEND) KEYLENGTH(2)
000260 KEYFEEDBACK(WT-KEY-FEEDBACK)
000261 END-EXEC.
- - - - 20 LINES NOT DISPLAYED
000289 EXEC DLI
000290 GET NEXT IN PARENT
000291 SEGMENT(VALID)
000292 SEGMENT(COUNT) SEGLENGTH(8)
000293 INTO(WORK-COUNT-SEG)
000294 KEYS(WT-KEY-SEND) KEYLENGTH(5)
000295 KEYFEEDBACK(WT-KEY-FEEDBACK)

Debugging Interactively 5-31
Figure 5-47. Result of Issuing the NOLINES Command

Finding a String IN COBOL Structures

COBOL-structure keywords can also be used with the IN keyword. They are used to find a
string or a data name IN a COBOL structure. For example, the following FIND command
is entered with the string B010, part of a performed paragraph label:

FIND B010 IN PARA

The FIND string IN COBOL-structure lets you focus on the statement that is of concern,
rather than issue several repeat FIND commands. See the results illustrated in Figure 5-48.

Figure 5-48. Result of FIND Data String With IN PARAGRAPH

The NOLINES Keyword and Command

In the previous example, the NOLINES command was entered to suppress the xxx LINES
NOT DISPLAYED message line that appears when the EXCLUDE keyword is used with
FIND. A NOLINES keyword is also available with FIND. Like the NOLINES command, the
NOLINES keyword eliminates the message line that appears with the use of the EXCLUDE
keyword. However, it is effective only when used in conjunction with the EXCLUDE
keyword.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
 16 DLI found
------ --- Before OSDLI <>
******************************** TOP OF MODULE *********************************
000201 EXEC DLI SCHD
000202 PSB(TRIDATA)
000203 END-EXEC.
000256 EXEC DLI GET UNIQUE
000257 SEGMENT(VALID) SEGLENGTH(4)
000258 INTO(WORK-ROOT-SEG)
000259 KEYS(WT-KEY-SEND) KEYLENGTH(2)
000260 KEYFEEDBACK(WT-KEY-FEEDBACK)
000261 END-EXEC.
000289 EXEC DLI
000290 GET NEXT IN PARENT
000291 SEGMENT(VALID)
000292 SEGMENT(COUNT) SEGLENGTH(8)
000293 INTO(WORK-COUNT-SEG)
000294 KEYS(WT-KEY-SEND) KEYLENGTH(5)
000295 KEYFEEDBACK(WT-KEY-FEEDBACK)
000296 END-EXEC.
000297 EXEC DLI
000298 REPLACE

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 1 CHARS ’B010’ FOUND
------ -- Before IQTEST <>
000203 B005-PROCESS-DETAIL-RECS-EXIT.
000204 B010-PROCESS-TEACHER-CHANGE.
000205 DIVIDE TOTAL-TEACHER-IQ BY TEACHER-STUDENT-TOTAL
000206 GIVING WA-TCHR-AVG-IQ ROUNDED.
000207 MOVE WA-TCHR-AVG-IQ TO TATL-AVG-IQ.
000208 MOVE DOUBLE-SPACING TO PROPER-SPACING.
000209 WRITE IQ-TEST-REPORT-LINE FROM TEACHER-AVG-TOTAL-LINE
000210 AFTER PROPER-SPACING.
000211 MOVE ZERO TO TOTAL-TEACHER-IQ.
000212 MOVE ZERO TO WA-TCHR-AVG-IQ.
000213 MOVE ZERO TO TEACHER-STUDENT-TOTAL.

5-32 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Using the EXCLUDE Command With FIND

The EXCLUDE command includes the keyword parameter ALL, which excludes all lines
in a program. The EXCLUDE ALL command can be used effectively with FIND.Issuing the
EXCLUDE ALL command results in the removal of all the source lines in the display. You
can also use the NOLINES command to suppress the xxx LINES NOT DISPLAYED
message line.

Entering the following commands results in the display shown in Figure 5-49:

EXCLUDE ALL;NOLINES

After all lines in the program have been excluded, the FIND command can be issued for
multiple data names, to make a cumulative search for the source of a problem.

Figure 5-49. Result of Excluding ALL Lines

Note that you can also concatenate the EXCLUDE ALL command along with a FIND
command. For example, entering the following commands results in the display shown
in Figure 5-50:

EXCLUDE ALL;NOLINES;FIND SUBS

Figure 5-50. Result of FIND SUBS Command After EXCLUDE ALL Command

Using the FIND CSR Command

The CSR keyword issues a FIND command for the data name or string under the cursor. It
functions like PEEK CSR, searching for data names as well as strings. IN and OF
qualifications are automatically picked up.

When you look at Figure 5-51 on page 5-33, the cursor is positioned on the first M on
line 553. Press the PF14 key or enter the FIND CSR command as shown.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> FIND SUBS SCROLL ===> CSR
PROGRAM: IMSPROG2 MODULE: TRIMAIN COMP DATE: 09/28/1996 COMP TIME: 12:54:26
------ -- Before IMSPROG2 <>
******************************** TOP OF MODULE *********************************

****************************** BOTTOM OF MODULE ********************************

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
 49 Data Refs: 1 DEF, 30 USES, 18 MODS found for SUBS
------ -- Before IMSPROG2 <>
********************************* TOP OF MODULE ********************************
000085 77 SUBS PIC S9(3) COMP. DEF
000654 ELSE MOVE NEXT-SHIP-DETAIL TO SUBS MOD
000656 UNTIL SUBS = 3. USE
000659 MOVE UNPROT-ATTR-NUM TO FE20SNR-ATTR (SUBS) USE
000660 FE20SDAT-ATTR (SUBS), SHIPSTAT-ATTR (SUBS). 2 USE
000661 MOVE UNPROT-ATTR-ALPH TO FE20SMET-ATTR (SUBS). USE
000662 ADD 1 TO SUBS. MOD
000680 THEN MOVE NEXT-SHIP-DETAIL TO SUBS. MOD
000681 PERFORM SHPCRTN UNTIL SUBS = 3 OR USE
000682 IN-SHIP-DETAIL (SUBS) = SPACES USE
000697 MOVE IN-SHIP-DETAILS (SUBS) TO SE0ORDR7. USE
000707 IF SUBS = 2 USE

Debugging Interactively 5-33
Figure 5-51. Using the FIND CSR Command

FIND CSR searches for the first instance of the data name under the cursor and highlights
it, as shown in Figure 5-52.

Figure 5-52. Result of Entering FIND CSR

Logging the Results of a FIND Command

Results of Data Name and COBOL Structure FINDs can optionally be written to the log.
Since this option defaults to OFF, a user must enter the SET command as follows to
activate this feature:

SET LOG FIND ON

Information written to the log includes the FIND command entered, the name of the
program being searched, the number of occurrences detected, and the source lines
containing the argument. For all indirect FINDs and enhanced FINDs, the level of
indirection is also logged.

All source statements containing the argument are displayed after the initial command
has been issued, regardless whether the NEXT, PREV, LAST, or FIRST keywords are used.
No additional logging will occur when a repeat FIND command is issued. Caution should
be used when the FIND command is frequently issued, with explicit attention given to
the amount of space allocated to the log file.

The general format of the logged data can be seen in the following example (refer to
Figure 5-53 on page 5-34):

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> FIND CSR SCROLL ===> CSR
PROGRAM: IMSPROG2 MODULE: IMSPROG2 COMP DATE: 09/28/1996 COMP TIME: 14:41:59
------ -- Before IMSPROG2 <>
000548 ACCEPT TODAY FROM DATE.
000549 MOVE CORR TODAY TO TODAY1.
000550 MOVE CORR TODAY TO TODAY2.
000551 * CALCULATE ABOUT 2 WEEKS HENCE INTO TODAY2
000552 IF DD OF TODAY2 < 15, ADD 14 TO DD OF TODAY2.
000553 ELSE ADD 1 TO MM OF TODAY2, SUBTRACT 14 FROM DD OF TODAY2.
000554 IF MM OF TODAY2 = 13, MOVE 01 TO MM OF TODAY2
000555 ADD 1 TO YY OF TODAY2

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
 4 Data Refs: 1 DEF, 2 USES, 1 MOD found for MM
------ -- Before IMSPROG2 <>
000221 01 TODAY2.
000222 02 MM PIC 99. DEF
000223 02 DD PIC 99.
000224 02 YY PIC 99.
000225 *
000227 * INPUT DATA FOR TRANSACTION TQ2CONEW
000228 *
000229 01 INPUT-MESSAGE-PASS1.
000230 02 IN-LL1 PIC S9(3) COMP.
000231 02 IN-ZZ1 PIC S9(3) COMP.
000232 02 IN-PASS1 PIC X(16).
000233 02 FILLER PIC X(620).

5-34 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 5-53. Data Format When Logging The Results Of A FIND Command

Tracing the Flow of Control

You can trace the flow of control with the TRACE and the SHOW PREVIOUS commands.

Using the TRACE Command

The TRACE command traces the flow of control as your program executes and lets you
view it on the Source display screen. The specified statements or paragraph names are
highlighted as they are executed, until a breakpoint is reached, an abend is intercepted, a
terminal I/O is issued, a keyboard interrupt is detected, or the end of the program is
encountered.

In the case of tracing module calls, however, the tracing is not visible on the source
screen. The calling module, the called module, and the number of times the calls are
made are written to the log during program execution. The call activities can be viewed
by entering LOG and reviewing the log.

For example, suppose you enter the following TRACE command for the TRIMAIN
program:

TRACE MODULES

After you have executed the program by entering GO, you can access the log using the
LOG command. As seen in Figure 5-54 on page 5-35, you can trace the flow of control as
the various modules are called.

********************************* TOP OF DATA **********************************
+--+
: JOB: USER123 :
: XPEDITER/TSO RELEASE 06.40.00 CUSTOMER # 010000 STEP: TSOSTEP1 :
: TAPE CREATE DATE 1997050 DATE: 03/08/1997 :
: COMPUWARE CORPORATION TIME: 15.16.19 :
+--+
 XPED TSO SPF
 TEST TRIMAIN
*** TRIMAIN FROM USER!.LOADLIB LINK 01/23/1997
 BEFORE TRIMAIN::TRIMAIN:
 AFTER TRIMAIN::TRIMAIN:
 PAUSE Before TRIMAIN
 BEFORE BREAKPOINT ENCOUNTERED
 SET LOG FIND ON
 FIND TRIANGLE-TYPE
 PROGRAM=TRIMAIN

4 DATA REFS: 1 DEF, 1 USE, 2 MODS FOUND FOR TRIANGLE-TYPE
 000029 01 TRIANGLE-TYPE PIC 9. DEF
 000050 MOVE ZERO TO TRIANGLE-TYPE MOD
 000051 CALL ’TRITST’ USING WORK-REC TRIANGLE-TYPE MOD
 000052 SET TX TO TRIANGLE-TYPE USE
******************************** BOTTOM OF DATA *******************************

Debugging Interactively 5-35
Figure 5-54. Session Log for the TRACE MODULES Command

When the TRACE command is used with the MAX keyword, the trace function pauses
when execution reaches the preset limit. The default value for the maximum limit is 25.
For additional information regarding the TRACE command refer to “Using the TRACE
Command” on page 5-11.

Using the SHOW PREVIOUS Command

The SHOW PREVIOUS command lists, in logical sequence, the previous 100 statements
along with the executed breakpoints. The list presented by the SHOW PREVIOUS
command can be useful in reviewing the execution path to understand how you got to
the present location. Since any implied breakpoints are recognized with the SHOW
PREVIOUS command, a program that was run with the TRACE ALL PARAGRAPHS
command presents a list like that shown in Figure 5-55 as the result of entering SHOW
PREVIOUS.

Figure 5-55. Result of Entering the SHOW PREVIOUS Command

------------------------------- XPEDITER/TSO - LOG -----------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 09/28/1996 COMP TIME: 14:41:59
--- After TRIMAIN ->
TRITST RETURN TO TRIMAIN
TRITST CALLED BY TRIMAIN - 5 CALLS
TRITST RETURN TO TRIMAIN
TRITST CALLED BY TRIMAIN - 6 CALLS
TRITST RETURN TO TRIMAIN
TRITST CALLED BY TRIMAIN - 7 CALLS
TRITST RETURN TO TRIMAIN
TRITST CALLED BY TRIMAIN - 8 CALLS
TRITST RETURN TO TRIMAIN
TRITST CALLED BY TRIMAIN - 9 CALLS
TRITST RETURN TO TRIMAIN
TRITST CALLED BY TRIMAIN - 10 CALLS
TRITST RETURN TO TRIMAIN
TRITST CALLED BY TRIMAIN - 11 CALLS
TRITST RETURN TO TRIMAIN
TRITST CALLED BY TRIMAIN - 12 CALLS
TRITST RETURN TO TRIMAIN
PAUSE AFTER TRIMAIN IN MAIN-PARA
TEST COMPLETED
******************************* BOTTOM OF DATA *********************************

------------------------------- XPEDITER/TSO - SHOW ----------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 09/28/1996 COMP TIME: 14:41:59
--- After TRIMAIN ->
********************************* TOP OF DATA **********************************
000034 PROCEDURE DIVISION. TRIMAIN
000035 MAIN-PARA. TRIMAIN
000041 INIT-PARA. TRIMAIN
000045 ANALYZE-NEXT-REC. TRIMAIN
000045 ANALYZE-NEXT-REC. TRIMAIN
000045 ANALYZE-NEXT-REC. TRIMAIN
000045 ANALYZE-NEXT-REC. TRIMAIN
000045 ANALYZE-NEXT-REC. TRIMAIN
000045 ANALYZE-NEXT-REC. TRIMAIN
000045 ANALYZE-NEXT-REC. TRIMAIN
000045 ANALYZE-NEXT-REC. TRIMAIN
000045 ANALYZE-NEXT-REC. TRIMAIN
000045 ANALYZE-NEXT-REC. TRIMAIN
000045 ANALYZE-NEXT-REC. TRIMAIN
000045 ANALYZE-NEXT-REC. TRIMAIN
000045 ANALYZE-NEXT-REC. TRIMAIN
000054 ENDING-PARA. TRIMAIN
000040 GOBACK. TRIMAIN
****************************** BOTTOM OF DATA **********************************

5-36 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Monitoring Execution Coverage

You can monitor execution coverage with the COUNT and SHOW COUNT commands.

Using the COUNT Command

The COUNT command maintains execution counts and lets you analyze statement level
execution coverage after running the program. Figure 5-56 shows the result of setting
counters at every paragraph by entering the following command, then pressing PF12
(GO) to resume execution:

COUNT ALL PARAGRAPHS

Figure 5-56. Result of Entering the COUNT ALL PARAGRAPHS and GO Commands

A 7-digit counter is displayed at the right of the screen for each statement or paragraph
that is counted. You can globally monitor execution coverage by using the ALL keyword
or selectively monitor by specifying the statement numbers. When the ALL keyword is
issued, however, it only applies to the current module.

Using the SHOW COUNT Command

The statements that are monitored with the COUNT command can be listed by entering
the SHOW COUNT command. The source lines without counters are excluded from the
screen display. Figure 5-57 on page 5-37 illustrates the result of the SHOW COUNT
command after monitoring execution coverage at the paragraph level.

------------------------------ XPEDITER/TSO - SHOW -----------------------------
COMMAND ===> SCROLL ===> CSR

000034 B PROCEDURE DIVISION.
000035 MAIN-PARA. 0000001
000036 PERFORM INIT-PARA.
000037 PERFORM ANALYZE-NEXT-REC
000038 UNTIL OUT-OF-RECS = ’Y’.
000039 PERFORM ENDING-PARA.
====>> A GOBACK.
000041 INIT-PARA. 0000001
000042 MOVE ZEROS TO N-CNTR (1) N-CNTR (2) N-CNTR (3) N-CNTR (4).
000043 OPEN INPUT INFILE.
000044 MOVE ’N’ TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC. 0000014
000046 READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.

Debugging Interactively 5-37
Figure 5-57. Result of Entering the SHOW COUNT Command

When the SHOW COUNT command is issued, the entire Procedure Division is written to
the log with the 7-digit counters displayed.

If you do not want to write the entire Procedure Division to the log, enter the SHOW
COUNT command with the NOLOG keyword. The results of execution coverage will not
be recorded.

Monitoring and Reviewing the Execution Path

The MONITOR and REVERSE commands are used to activate review mode. Review mode
lets you monitor and review the execution path by stepping backwards through your
program. You can view the statements that were executed during normal (forward)
execution. You can trace backwards through the actual sequence of instructions that led to
the current breakpoint and see the data values as they were at the time. There is no
guesswork about which of the possible paths the program took; the actual path that was
taken during forward execution of the program is displayed.

The MONITOR command records the execution history and the REVERSE command
enables you to review the execution history.

To activate review mode, enter the MONITOR command from the primary command
line. MONITOR without a module name records history for the current module—not
necessarily the active module that is currently executing, but the module indicated by
the program field on the third line.

After issuing the MONITOR command, execute the statements you want to review. Then,
when your program pauses during logical execution, enter the following primary
command:

REVERSE

The REVERSE command places the execution arrow on the last statement that was
executed, and changes the execution direction of your program—from forward to reverse
(backward). From this point on, the REVERSE command acts as a toggle that changes the
direction in which your program is executed. During review mode, the execution status
message on the fourth line of the screen indicates the execution direction and the
statement where execution is paused.

Notes:

1. Entering the REVERSE command only changes the direction of execution; it does not
cause execution to occur.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
 SPECIFIED STATEMENTS NOT EXCLUDED - RESET WITH ’END’
 ** END **

------ -- After TRIMAIN <>
******************************** TOP OF MODULE *********************************
- - - - - - - - - - - - - - - - - - - - 34 LINES NOT DISPLAYED
000035 MAIN-PARA. 0000001
- - - - - - - - - - - - - - - - - - - - - 5 LINES NOT DISPLAYED
000041 INIT-PARA. 0000001
- - - - - - - - - - - - - - - - - - - - - 3 LINES NOT DISPLAYED
000045 ANALYZE-NEXT-REC. 0000014
- - - - - - - - - - - - - - - - - - - - - 8 LINES NOT DISPLAYED
000054 ENDING-PARA. 0000001
- - - - - - - - - - - - - - - - - - - - - 2 LINES NOT DISPLAYED
****** ********************* BOTTOM OF MODULE ********************************

5-38 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
2. You must enter the GO n or GO command to begin execution in the current
direction.

The GO n command moves the active arrow n lines in the current direction, which
lets you step through the program line-by-line. Unlike normal execution mode, a GO
n command in review mode ignores module boundaries and will pause after
executing n statements, regardless of what modules they are in. It is recommended
that you use GO 1 commands to do a backward line-by-line execution.

3. In review mode, TRACE does not recognize the default maximum limit of 25
statements, and continues execution until it encounters the AT INITIAL
EXECUTION POSITION. To halt the reverse trace, press the Attn key.

While review mode is activated, you can set and remove breakpoints, perform tracing (in
either direction), and display data. For example, you may want to open a Keep window to
view the data values as they are restored to their original state as reverse execution is
performed, as shown in Figure 5-58 for the data value WORK-REC.

Figure 5-58. Review Mode with a Keep Window Opened

Note: While in review mode, you cannot use the GOTO command or alter data by
typing over it or by using the MOVE command. Also, skipped lines are ignored
during review mode.

To exit from review mode when you have finished doing your analysis, use the RESUME
command.

The message AT CURRENT EXECUTION POSITION is displayed, and review mode is
automatically ended. Normal forward execution occurs until you again enter the
REVERSE command. You can also terminate review mode while in forward execution by
entering GO or GO n until you see the message AT CURRENT EXECUTION POSITION.

Kept items are logged at each breakpoint while in review mode, just as in normal
execution mode. The logged items are all logged independently of review mode or
normal execution mode, except for the following:

• Encountering the beginning of the program while in review mode
• Encountering the current execution location while in review mode.

Modifying Program Logic
This section describes the XPEDITER/TSO commands that let you modify program logic
by bypassing code segments, adding statements, and forcing logic changes. The SKIP,
INSERT, GOTO, and MOVE commands allow you to try out fixes dynamically without
requiring any source code modification.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 NEXT LOGICAL INSTRUCTION IS RESUME EXECUTION

000030 K 01 WORK-REC > 345
 ** END **

------ --- Reverse - After TRIMAIN:45 <>
000044 MOVE ’N’ TO OUT-OF-RECS.
====>> A ANALYZE-NEXT-REC.

Debugging Interactively 5-39
Bypassing Code With the SKIP Command

Unwanted code can be bypassed using the SKIP command. There is no need to comment
out the code and recompile the program for it to take effect. For example, a call to a
submodule that is not yet written can be bypassed without requiring a program stub to
be developed. Figure 5-59 shows the effect of skipping module TRITST and pausing
execution following the CALL statement. The following commands were issued:

SKIP TRITST:
AFTER 51
GO

The effect of the SKIP command can be seen in the parameters WORK-REC and
TRIANGLE-TYPE as they are displayed automatically in the Keep window. You could also
issue KEEP commands for TRIANGLE-TYPE and WORK-REC to continuously display these
parameters.

Figure 5-59. Result of Entering the SKIP TRITST: Command

The parameter TRIANGLE-TYPE is left untouched since the CALL to TRITST was bypassed.
You can avoid a S0C7 abend by moving a valid value to TRIANGLE-TYPE.

The SKIP command can be used with a statement, a range of statements, a paragraph
name, or a module name.

There are a couple of situations to be aware of when using the SKIP command. In order to
bypass an entire IF statement, you must skip each verb, not just the statement containing
the IF condition. Also, if you skip a statement that sets a switch or flag, the execution
path could change or end in an infinite loop. More subtly, the COBOL compiler generates
multiple instructions for each COBOL verb. Some of these instructions can load base
pointers and base registers for statements. Since a SKIP bypasses all instructions
associated with the verb, a S0C1 or S0C4 can result. The SKIP command should be
deleted in this case. Use the DELETE SKIP command or the DS line command to delete
the skip.

The SKIP command can be combined with inserted statements to test alternative logic
flow. Figure 5-60 on page 5-40 shows that the original IF statement starting with
statement 40 was skipped and completely replaced by the inserted IF logic above it. The
insert lines (’’’’’’) were opened up by issuing an I (Insert) line command (I 3) on line 39.
Refer to “Inserting Statements” on page 5-40 below for more information on inserting
statements.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 NEXT LOGICAL INSTRUCTION IS TRIMAIN:52
000029 01 TRIANGLE-TYPE > 0 DECIMAL

000030 01 WORK-REC > 345
 ** END **

------ --- After TRIMAIN:51 <>
000050 MOVE ZERO TO TRIANGLE-TYPE
====>> A CALL ’TRITST’ USING WORK-REC TRIANGLE-TYPE
000052 SET TX TO TRIANGLE-TYPE
000053 ADD 1 TO N-CNTR(TX)
000054 ENDING-PARA.
000055 CLOSE INFILE.
000056 CALL ’TRIRPT’ USING NAME-N-CNTR-TABLE.
****************************** BOTTOM OF MODULE ********************************

5-40 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 5-60. Inserted Statements Must Precede the COBOL Statements That Are Skipped

This approach makes it easy to experiment with several potential fixes.

Inserting Statements

You can insert XPEDITER/TSO commands, such as MOVE, PEEK, GOTO, and PAUSE,
using the IF...ELSE... constructs to your program. The capability to insert statements
allows you to test fixes before you update the source code and actually recompile the
program. Inserted statements are executed after the last logical statement as if they are
part of the source code. Only one inserted command per line is permitted.

You can also dynamically insert SQL statements and prototype DB2 applications if you
have XPEDITER for DB2 Extension and File-AID for DB2 installed. Refer to “Using
XPEDITER for DB2 Extension” on page 5-44 for more information.

Figure 5-61 shows the effect of the inserted statements being executed. The PAUSE
command can be used to set a breakpoint within a block of inserted XPEDITER/TSO
commands or SQL statements. When the pause breakpoint is encountered,
XPEDITER/TSO temporarily pauses execution, issues a message, and returns control to
you, as shown.

Figure 5-61. Result of Executing Inserted Statements and Taking PAUSE

The Source display screen is designed after the ISPF/PDF editor. The COBOL source code
itself cannot be edited; however, you can insert XPEDITER/TSO commands to the
display-only source code by typing over the statement number area with the I (Insert)
line command. Use the D (Delete) line command to delete any lines. The syntax of the
inserted statements is checked by XPEDITER/TSO before they are executed. If the syntax
is incorrect, an error message is generated and the incorrect statement is highlighted
when you press Enter, as illustrated in Figure 5-62 on page 5-41.

000039 ADD +1 TO COUNTER
’’’’’’ if record-type = ’1’ and out-of-recs = ’N’
’’’’’’ move spaces to hold-area
’’’’’’ end-if
000040 S IF RECORD-TYPE = ’1’
000041 S MOVE SPACES TO HOLD-AREA.
000042 MOVE SPACES TO RECORD-TYPE

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 PAUSE REQUESTED BY INSERTED COMMAND

000030 01 WORK-REC > 111
 ** END **

------ -- Before TRIMAIN:46 <>
000040 GOBACK.
000041 A INIT-PARA.
000042 MOVE ZERO TO N-CNTR (1) N-CNTR (2) N-CNTR (3) N-CNTR (4).
000043 OPEN INPUT INFILE.
000044 MOVE ’N’ TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
000046 READ INFILE INTO WORK-REC
’’’’’’ IF WORK-REC = ’345’
’’’’’’ KEEP WORK-REC
’’’’’’ MOVE ’111’ TO WORK-REC
=====> PAUSE
’’’’’’ END-IF
000047 AT END

Debugging Interactively 5-41
Figure 5-62. Syntax Checking for Inserted Statements

INSERT Processing

You can enter the I (Insert) line command on a COBOL statement containing an
executable verb (PMAP record) and enter XPEDITER/TSO commands following the
statement. Only one inserted command per line is permitted. You cannot insert lines
after a statement containing only ELSE, AT END, or scope terminators (END-IF, END-
READ, END-PERFORM), where a breakpoint cannot be set. The reason for this rule is that
XPEDITER/TSO internally generates an after breakpoint on the COBOL statement where
the I line command is entered and interpretively executes the inserted statements only if
the internal after breakpoint is reached. In other words, the inserted statements are
associated with the COBOL code above them.

When commands are embedded at the end of a conditional structure that is delimited by
a period or a scope terminator, the inserted statements will be executed when the COBOL
code above them is reached. If you want the inserted statements to be executed only
when the true path is taken, place the insert anywhere inside the true path, as shown in
Figure 5-63. If you want the inserted statements to be executed only when the false path
is taken, place the insert anywhere inside the false path.

Figure 5-63. Inserting Statements Following a Conditional Construct

Placing the I line command on branching verbs such as PERFORM, GOBACK, and EXIT is
not permitted. A message INSERT NOT PERMITTED FOLLOWING verb is issued when
you attempt to do so. If you wish to execute statements following the return from the
actual performed paragraph, insert the statement after the last executable code in the
out-of-line paragraph.

Refer to the INSERT command in the XPEDITER/TSO and XPEDITER/IMS Reference Manual for
a list of commands that can and cannot be inserted in your program.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL===> CSR
 IF/ELSE/ENDIF LOGIC UNBALANCED
 ** END **

------ --- Before TRIMAIN <>
000045 ANALYZE-NEXT-REC.
000046 READ INFILE INTO WORK-REC
’’’’’’ IF WORK-REC = ’345’
’’’’’’ KEEP WORK-REC
’’’’’’ MOVE ’111’ TO WORK-REC
’’’’’’ PAUSE
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.

000044 MOVE ’N’ TO OUT-OF-RECS.
000045 ANALYZE-NEXT-REC.
000046 READ INFILE INTO WORK-REC
000047 AT END
000048 MOVE ’Y’ TO OUT-OF-RECS.
000049 IF OUT-OF-RECS = ’N’
000050 MOVE ZERO TO TRIANGLE-TYPE
000051 CALL ’TRITST’ USING WORK-REC TRIANGLE-TYPE
000052 SET TX TO TRIANGLE-TYPE
000053 ADD 1 TO N-CNTR(TX).
’’’’’’ KEEP OUT-OF-RECS
=====> PAUSE
000054 ENDING-PARA.

5-42 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Redirecting Logic

You can dynamically alter the control flow and force the program to take a certain path
by using the GOTO command, or by simply changing the data that is processed using the
MOVE command and let the program take its own course.

Using the GOTO Command

The GOTO command forces logic changes by redirecting the next executable statement
to elsewhere in the program. The command can be used to execute a wild branch, to
bypass statements, to test a loop repeatedly, or to take an alternate path. If your module
contains nested programs, you cannot use GOTO to branch to another nested program or
to go to a separately compiled program. GOTO is restricted to the current program.

Enter the following GOTO command to redirect execution from statement 58 to state-
ment 50 in the middle of a PERFORM VARYING clause, so that this statement never gets
completed.

GOTO 50

Figure 5-64 shows the result of entering this command.

Figure 5-64. Result of Entering teh GOTO Command

Using the MOVE Command

The MOVE command, on the other hand, indirectly allows you to change the execution
flow by modifying the values of switches, flags, and data that control the path to be
taken. Figure 5-65 on page 5-43 shows an example of altering TST-REC so that the
EVALUATE statement will set the EQUILATERAL switch instead of the SCALENE switch.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
 EXECUTION RESUMES HERE
 ----+----1----+----2----+----3
MORE-> K 01 DTL-LINE > NUMBER OF ISOSCELES TRIANGLES
COBOL K TX > 3 INDEX
000012 01 OUT-REC > NO ADDR
------ --- Before TRIRPT:50 <>
000047 PERFORM WRITE-DTLS
000048 VARYING TX FROM 1 BY 1
000049 UNTIL TX > 4.
=====> WRITE OUT-REC FROM BLANK-LINE.
000051 ADD T-CNTR (1) T-CNTR (2) T-CNTR (3) T-CNTR (4)
000052 GIVING DTL-CNTR.
000053 MOVE ’INPUT RECORDS’ TO DTL-TITLE.
000054 WRITE OUT-REC FROM DTL-LINE.
000055 CLOSE OUTFILE.
000056 GOBACK.
000057 WRITE-DTLS.
000058 MOVE T-NAME (TX) TO DTL-TITLE.
000059 MOVE T-CNTR (TX) TO DTL-CNTR.
000060 WRITE OUT-REC FROM DTL-LINE.
000061 MOVE-FIELDS.

Debugging Interactively 5-43
Figure 5-65. Altering Path by Modifying Data

Examining Files
You can display a list of all the datasets that are allocated during your test session and
find out whether they are available to your application program by typing SHOW
ALLOCATE on the primary command line. All the files that were allocated by processing
the file list specified on the test screen are shown at the bottom of the screen, following
ddname XOPTIONS. For example, sample program TRIMAIN reads data in INFILE DD and
writes a report to OUTFILE DD.

If you discover an open file problem, first check to see if all the necessary files are
allocated. If you are missing any files, you can dynamically access the file allocation
utility (FAU) during a test session. Type ALLOCATE on the primary command line,
allocate the missing files using the file allocation utility, and return to the test session.

You can also execute the TSO ALLOCATE command from the primary command line to
allocate additional files. To execute a TSO command, type TSO followed by the TSO
command; for example:

TSO ALLOCATE DD(OUTFILE) DSN(*)

Note: Additional files allocated during a test session are not freed when you terminate
the test session and return to the test screen. XPEDITER/TSO only allocates and
deallocates files that are contained in the file list specified on the test screen.
Figure 5-66 on page 5-44 contains an example of a SHOW ALLOCATE screen.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> MOVE 555 TO TST-REC SCROLL ===> CSR
PROGRAM: TRITST2 MODULE: TRITST2 COMP DATE: 07/28/1995 COMP TIME: 11:59:17

000011 K 01 TST-REC > 563
000012 05 A > 5 DECIMAL
000013 05 B > 6 DECIMAL
000014 05 C > 3 DECIMAL
------ -- Before TRITST2:31 <>
=====> B EVALUATE A = B ALSO B = C ALSO A = C
000032 WHEN TRUE ALSO TRUE ALSO TRUE
000033 SET EQUILATERAL TO TRUE
000034 WHEN TRUE ALSO ANY ALSO ANY
000035 SET ISOSCELES TO TRUE
000036 WHEN ANY ALSO TRUE ALSO ANY
000037 SET ISOSCELES TO TRUE
000038 WHEN ANY ALSO ANY ALSO TRUE
000039 SET ISOSCELES TO TRUE
000040 WHEN OTHER
000041 SET SCALENE TO TRUE
000042 END-EVALUATE
000044 A GOBACK.
******************************* BOTTOM OF MODULE *******************************

5-44 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 5-66. SHOW ALLOCATE Screen

You can view the file contents by typing BROWSE ddname or BROWSE 'dataset name’ if
the file is a sequential file or a member of a PDS. ISPF allows you to split screens and
browse or edit a file while you are debugging your program with XPEDITER/TSO
Remember that the XPEDITER/TSO test session default for PF2 is PEEK CSR (not SPLIT)
and for PF9 is GO 1 (not SWAP).

None of the ISPF commands are available in the dialog environment since
XPEDITER/TSO does not run as a dialog program.

Using XPEDITER for DB2 Extension
This section describes how to:

• Browse and edit DB2 table data while testing your program
• Analyze SQL statement execution with the FADB2 EXPLAIN command
• Prototype SQL logic by inserting SQL statements.

Refer to the File-AID for DB2 Reference Manual for information about using File-AID for DB2.

Note: XPEDITER/TSO supports debugging of any DB2 program within all execution
environments selectable under the Environments Menu, with the following
exceptions:

• The first exception to this XPEDITER/TSO support rule is the XPEDITER/TSO
dialog environment.

• The second exception to normal debugging is that XPEDITER for DB2
Extension cannot be accessed when using the Batch Connect facility.

Browsing and Editing DB2 Table Data

When debugging DB2 programs, you can access File-AID for DB2 to inspect and
manipulate the DB2 table data associated with SQL statements being executed.

For example, you can experiment with program SQL statements and then enter FADB2
EDIT to access File-AID for DB2 and change the test data associated with the statements.

----------------------------- XPEDITER/TSO - SHOW ------------------------------
COMMAND ===> SCROLL===> CSR
PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 09/19/1995 COMP TIME: 14:41:59
-- Before TRIMAIN ->
************************************ TOP OF DATA *******************************
*** ALLOCATED DATA SET DDNAMES AND DSNAMES ***
001 SYSPRINT TERMINAL NEW DELETE
002 SYSTERM TERMINAL NEW DELETE
003 SYSIN TERMINAL NEW DELETE
004 ISPCTL0 SYS94347.T093804.RA000.FLGDAA1.R0035029 NEW DELETE
005 ISPCTL1 SYS94347.T093804.RA000.FLGDAA1.R0035030 NEW DELETE
006 ISPCTL2 SYS94347.T093804.RA000.FLGDAA1.R0035031 NEW DELETE
007 SYS00001 SYS1.BRODCAST IN-USE SHR KEEP
008 ISPPROF FLGDAA1.ISPF.ISPPROF IN-USE SHR KEEP
009 ISPLLIB SUPPORT.INHOUSE.ISPFLLIB IN-USE SHR KEEP
010 " SYS2.PROD.ISPLLIB IN-USE SHR KEEP
011 ISPMLIB SUPPORT.INHOUSE.ISPFMLIB IN-USE SHR KEEP
012 " SYS2.PROD.ISPMLIB IN-USE SHR KEEP
013 ISPPLIB SUPPORT.INHOUSE.ISPFPLIB IN-USE SHR KEEP
014 " SYS2.PROD.ISPPLIB IN-USE SHR KEEP
015 ISPSLIB SUPPORT.INHOUSE.ISPFSLIB IN-USE SHR KEEP
016 " SYS2.PROD.ISPSLIB IN-USE SHR KEEP
017 ISPTLIB SUPPORT.INHOUSE.ISPFTLIB IN-USE SHR KEEP
018 " SYS2.PROD.ISPTLIB IN-USE SHR KEEP

Debugging Interactively 5-45
The FADB2 EDIT command transfers control directly to the File-AID for DB2 Edit
function. Once in File-AID for DB2 Edit, you can enter the information to access the table
data you want to view. Refer to the File-AID for DB2 Reference Manual for information about
using the Browse and Edit functions.

Analyzing SQL Statement Execution

The FADB2 EXPLAIN command (XP line command) can be entered for any SELECT,
DELETE, INSERT, or UPDATE SQL statement in your program to display information
about the execution of the statement.

The Explain data is also stored in a DB2 table called user id.Plan_Table. The stored Explain
data can be used to generate reports using the File-AID for DB2 Reports facility or view the
Plan_Table using the File-AID for DB2 Browse facility.

Note: The Plan_Table must exist before you use the FADB2 EXPLAIN command.

For example, in Figure 5-67, the XP line command is entered on the EXEC SQL INSERT
statement number 579.

Figure 5-67. Using the FADB2 EXPLAIN Line Command

When the FADB2 EXPLAIN command is entered, File-AID for DB2 is accessed and the SQL
Source Analysis screen shown in Figure 5-68 is displayed.

Figure 5-68. SQL Source Analysis Screen

Inserting Program SQL Statements

You can dynamically insert and execute SQL statements from within your XPEDITER/TSO
source. SQL statements are inserted with the INSERT command. Refer to “Modifying
Program Logic” on page 5-38 for detailed information about the INSERT command.

 000570 END-EXEC
 XP 579 EXEC SQL INSERT INTO VTRIDB2
 000580 (SSNR,LASTNAME,FIRSTNAME,STREETADR,CITY,STATE,ZIPCODE,
 000581 PHONENR,LICENSENO)

File-AID for DB2 -------------- SQL Source Analysis ------------ ROW 1 TO 1 OF 1
COMMAND ===> SCROLL ===> PAGE
 SSID: DSNG
SQL Statement: 1 OF 1

INSERT
INTO VTRIDB2 (SSNR,LASTNAME,FIRSTNAME,STREETADR,CITY,STATE,ZIPCODE,
PHONENR,LICENSENO)
VALUES (.SSNR,:LASTNAME,:FIRSTNAME,:STREETADR,:CITY,:STATE,:ZIPCODE,:PHON
ENR,:LICENSENO)

Line Commands:
 T - Table Information I - Index Information F - Formatted Display

 Qblk Plan Access Match Index TS SortN SortC Table Pre Col Mix
CMD No No Method Type Cols Only Lock UJOG UJOG No Fetch Eval Seg
- 1 0 0 0 N IX NNNN NNNN 1 0
 Access Access Join Join Table: FLGJXY1.VTRIDB2
 Degree Pgroup ID Degree Pgroup ID Index: <NONE>
 N/A N/A N/A N/A
******************************* BOTTOM OF DATA *****************************

5-46 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
The inserted statements are executed after the last logical statement as if they are part of
the source code. The capability to insert SQL statements lets you test fixes before you
update the source code and recompile the program.

Each inserted SQL statement must be prefixed by EXEC SQL and suffixed by END-EXEC.
Otherwise, XPEDITER/TSO issues a syntax error message. Any data entered after the END-
EXEC statement, on the same line, is ignored. Error messages regarding inserted SQL
statements are displayed in the same manner as error messages regarding other inserted
statements. Additional help is available for negative SQL return codes by entering the
primary command FADB2 HELP after the error message is displayed.

SQL statements are allowed within an inserted IF construct. For example,

IF A = B

 EXEC SQL

 SELECT

 END-EXEC

 MOVE 1 TO A

 EXEC SQL

 SELECT

 END-EXEC

END-IF

Inserted SQL statements appear in the XPEDITER/TSO log and script in the same manner
as other inserted statements. You can keep or display host variables in inserted SQL
statements.

SQL Statements That Can Be Inserted in Your Program

The following SQL statements are supported (i.e., the statements can be inserted in your
source and are valid in a debugging session):

ALTER INDEX

Changes the description of an index.

ALTER STOGROUP

Changes the description of a storage group.

ALTER TABLE

Changes the description of a table.

ALTER TABLESPACE

Changes the description of a table space.

BEGIN DECLARE

Marks the beginning of a host variable declaration section.

CLOSE

Closes the cursor and deletes the temporary application-specific result table.

COMMENT ON

Replaces or adds a comment to the description of a table, view, or column.

COMMIT

Terminates a unit of recovery and commits the DB2 table changes made by that unit
of recovery.

Debugging Interactively 5-47
CREATE DATABASE

Defines a database.

CREATE INDEX

Creates an index on a table.

CREATE STOGROUP

Defines a storage group or set of volumes, controlled by a VSAM catalog, on which
storage can later be allocated for table spaces and indexes.

CREATE SYNONYM

Defines an alternate name for a table or view.

CREATE TABLE

Creates a table.

CREATE TABLESPACE

Allocates and formats table spaces.

CREATE VIEW

Defines a view of one or more tables.

DECLARE CURSOR

Associates a cursor name with OPEN, FETCH, and CLOSE statements, which declare
and retrieve data from an application specific result table row-by-row. DECLARE
CURSOR can be inserted into the executable portion of a program.

DECLARE STATEMENT

Declares a statement for dynamic SQL.

DECLARE TABLE

Declares a table. The DECLARE TABLE declarative statement can be inserted into the
application program. It causes host variable locations to be defined in accordance to
the columns of the declared table. You can reference these columns in subsequent
SQL statements.

DELETE

Deletes one or more rows from a table.

DESCRIBE

Provides a description of the columns in a table or view.

DROP

Removes an object and its description in the DB2 catalog.

END DECLARE

Marks the ending of a host variable declaration section.

EXECUTE

Executes a prepared SQL statement.

EXECUTE IMMEDIATE

Prepares and executes an SQL statement.

EXPLAIN

Obtains information about how an SQL statement will be executed. An example
showing the use of EXPLAIN is given in “Analyzing SQL Statement Execution” on
page 5-45.

5-48 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
FETCH

Positions the cursor on the next row of the application-specific result table and
assigns the values of that row to host variables in the application program.

GRANT

Grants privileges.

INSERT

Inserts rows into a table or view.

LABEL ON

Adds or replaces labels in the catalog descriptions of tables, views, columns, or sets of
columns.

LOCK TABLE

Acquires a shared or exclusive lock on a table.

OPEN

Opens a cursor so that it can be used by FETCH to fetch rows from the application-
specific result table.

PREPARE

Dynamically prepares an SQL statement for execution.

REVOKE

Revokes privileges.

ROLLBACK

Terminates a unit of recovery and backs out database changes made by that unit of
recovery.

SELECT

Specifies a result table and selects rows to view.

SET

Changes the value of the authorization ID.

UPDATE

Updates the values of specified columns in rows of a table or view.

Notes:

1. The syntax for all SQL statements is explained in the IBM Database 2 Reference manual.

2. Host variables can be used within inserted SQL. XPEDITER/TSO requires that each
host variable be preceded by a colon even though DB2 does not always require it.

3. Within the BTS/DLI setup, recovery of DB2 tables and IMS databases is
uncoordinated. The SQL COMMIT and ROLLBACK commands commit and rollback
changes made to DB2 tables only; they do not affect your IMS databases.

Expanding EXEC SQL and EXEC CICS Statements
The GEN command can be used to enable the debugging of EXEC SQL, EXEC DLI, and
EXEC CICS statements. The GEN command lets you expand EXEC statements and display
translator-related statements. You can see and place breakpoints on the translated code
and debug the EXECs while the program is being executed.

If SET GEN is OFF (the system default), the unexpanded code is displayed. The GEN
command can be used to selectively expand and display translated code. The SET GEN

Debugging Interactively 5-49
ON command globally expands and displays all statements. If SET GEN is ON, there is no
requirement to use the GEN command since all EXECs have already been expanded. SET
GEN ON remains operational across debugging sessions.

If GEN is entered as a primary command, the statement number must point to the start
of the EXEC statement. You can specify a list or a range of statement numbers.

When a GEN is entered, the EXEC appears on the Source display screen as code that is
commented out. The expanded code generated by the translator is also displayed. Any
breakpoints that have been set on the EXEC statement appear in the expanded code.
After expansion, breakpoints on the commented code are not allowed, but breakpoints
on the expanded code are allowed.

On a TRACE or WHEN breakpoint, each statement within the expanded code receives the
appropriate breakpoint.

On a COUNT, the expansion gives counts for all statements. When collapsed, the count
on the first statement is moved to the EXEC statement.

An INSERT on an EXEC is moved after the last statement in the expanded code. If you
insert on expanded code, the inserted data is lost when the expanded code is collapsed.

The G line command must be entered on the line at the start of the EXEC statement. The
block command, GG, must begin and end on the first lines of EXEC statements. The line
command, DG, removes the effects of the G or GG line commands, as does the DELETE
GEN primary command.

Example 1—Expanding an EXEC SQL Statement Using a G Line Command:

As seen in Figure 5-69, the G line command is entered on statement number 396, which
results in the expanded text shown in Figure 5-70.

Figure 5-69. Expanding an EXEC SQL Statement Using the G(en) Line Command

Figure 5-70. Expanded EXEC SQL Statement

Example 2—Seeing the Effect of Breakpoints Set Against an EXEC:

In Figure 5-71, note that before and after breakpoints have been entered on the EXEC
SQL statement number 396, as denoted by the @ sign. If you gen this EXEC statement,
you can see where the breakpoints are applied in the translated code, as seen in Figure 5-
72.

 000394 OR FIRSTNAME LIKE :FNAME-WORK
 000395 END-EXEC.
 G 396 EXEC SQL OPEN DIRECTORY END-EXEC.
 000403 EXEC SQL FETCH DIRECTORY INTO :PDIRECTORY END-EXEC.
 000410 IF SQLCODE = SQL-NOT-FOUND

----------------------------- XPEDITER/TSO - LOG -------------------------------
COMMAND ===> SCROLL ===> CSR

000394 OR FIRSTNAME LIKE :FNAME-WORK
000395 END-EXEC.
000396 * EXEC SQL OPEN DIRECTORY END-EXEC.
000397 PERFORM SQL-INITIAL UNTIL SQL-INIT-DONE
000398 CALL ’DSNHLI’ USING SQL-PLIST6
000399 IF SQLCODE < 0 GO TO DBERROR ELSE
000400 IF SQLCODE > 0 AND SQLCODE NOT = 100
000401 OR SQLWARN0 = ’W’ GO TO DBERROR ELSE
000402 MOVE 1 TO SQL-INIT-FLAG.
000403 EXEC SQL FETCH DIRECTORY INTO :PDIRECTORY END-EXEC.
000410 IF SQLCODE = SQL-NOT-FOUND

5-50 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 5-71. Before and After Breakpoints Set on an Unexpanded EXEC SQL Statement

After expansion, a before breakpoint on the EXEC SQL appears on the first verb of the
expanded code and an after breakpoint appears on the call to DSNHLI.

Figure 5-72. Before and After Breakpoints Shown on a Genned EXEC SQL Statement

Debugging a Sourceless Program
XPEDITER/TSO allows you to interactively debug programs that do not have the source
available (no source listing in the DDIO). You can choose either of two available
methods.

If requested, XPEDITER/TSO can create a “pseudo-assembler” view of the object code.
With this method, a temporary source member will be created. This allows you to debug
main programs and subprograms while employing the same strategy you would use if a
DDIO source listing had been created during assembly. See “Creating Pseudo-Assembler
Source” on page 5-54 for more information.

You can also choose to use XPEDITER’s traditional support for programs without source.
With this support, you can debug “sourceless” main programs, subprograms, or
GETMAINed areas in the same manner as interactive source level debugging, with a few
differences. Test session setup and startup is the same as setting up a session to
interactively debug at the source level. The differences occur during the debugging
session:

• XPEDITER/TSO debugging commands such as AFTER, BEFORE, COUNT, SKIP, TRACE,
WHEN, PEEK, KEEP, GOTO, and DELETE cannot be used.

• To set a breakpoint, you must use the AT command, which sets a before breakpoint.

When the AT breakpoint is reached, the AT Display screen shows your sourceless
program in dump format. You can enter XPEDITER/TSO debugging commands such
as GPREGS, MEMORY, SHOW, and so on.

Accessing a Sourceless Main Program

When program execution begins and the main program does not have source, the log is
automatically displayed with the message,

NO SOURCE LISTING DATA SET MEMBER FOR module-name.

 000394 OR FIRSTNAME LIKE :FNAME-WORK
 000395 END-EXEC.
 G 396 @ EXEC SQL OPEN DIRECTORY END-EXEC.
 000403 EXEC SQL FETCH DIRECTORY INTO :PDIRECTORY END-EXEC.
 000410 IF SQLCODE = SQL-NOT-FOUND

----------------------------- XPEDITER/TSO - LOG -------------------------------
COMMAND ===> SCROLL ===> CSR

000394 OR FIRSTNAME LIKE :FNAME-WORK
000395 END-EXEC.
000396 * EXEC SQL OPEN DIRECTORY END-EXEC.
000397 B PERFORM SQL-INITIAL UNTIL SQL-INIT-DONE
000398 A CALL ’DSNHLI’ USING SQL-PLIST6
000399 IF SQLCODE < 0 GO TO DBERROR ELSE
000400 IF SQLCODE > 0 AND SQLCODE NOT = 100
000401 OR SQLWARN0 = ’W’ GO TO DBERROR ELSE
000402 MOVE 1 TO SQL-INIT-FLAG.
000403 EXEC SQL FETCH DIRECTORY INTO :PDIRECTORY END-EXEC.
000410 IF SQLCODE = SQL-NOT-FOUND

Debugging Interactively 5-51
Refer to Figure 5-73 for an example that shows the main program without source.

Figure 5-73. Log Showing No Source Message for a Driver Program

You can use the AT command on the Log screen to set a breakpoint in the specified
program if you are familiar with the program. However, if you are not familiar with the
program, you can use the MEMORY command to display the program in dump format.
For example:

MEMORY TRIMAIN:

displays the Memory screen showing a dump of TRIMAIN.

The AT command can then be entered to set breakpoints in the program. Issuing the AT
command will also load the module into memory if it is not loaded. The full syntax of
the AT command is provided in the XPEDITER/TSO and XPEDITER/IMS Reference Manual.

Note: The AT command can also be entered in an initial script.

For example, entering the following on the Memory screen displays the At Display screen
shown in Figure 5-74.

AT TRIMAIN:;GO

Figure 5-74. AT Display Screen

----------------------------- XPEDITER/TSO - LOG -------------------------------
COMMAND ===> SCROLL ===> CSR
 NO SOURCE LISTING DATA SET MEMBER FOR TRIMAIN
-- Before TRIMAIN ->
********************************* TOP OF DATA *******************************
+---+
: JOB: FLGDAA1 :
: XPEDITER/TSO RELEASE 06.02.S1 CUSTOMER # 010000 STEP: TSOPROC :
: TAPE CREATE DATE 93244 DATE: 02/22/1995:
: COMPUWARE CORPORATION TIME: 17.31.27 :
+---+
 XPED TSO SPF
 TEST TRIMAIN
*** TRIMAIN FROM FLGDAA1.TEST62.LOADLIB LINK 02/22/1995
******************************** BOTTOM OF DATA *****************************

 ------------------------- XPEDITER/TSO - AT DISPLAY --------------------------
 COMMAND ===> SCROLL ===> CSR
 AT ADDRESS 00119F68 : 90ECD00C : STM 14,12,12(13)
 --- Before TRIMAIN --
BASE = 00119F68 0 - 2 - 4 - 6 - 8 - A - C - E - = 0-2-4-6-8-A-C-E-
 ******************************* TOP OF DATA **********************************
 000000 ===> 00ECD00C 185D05F0 4580F010 E3D9C9D4 = ..}..).0..0.TRIM
 000010 ===> C1C9D540 E5E2D9F1 0700989F F02407FF = AIN VSR1....0...
 000020 ===> 96021034 07FE41F0 000107FE 0011A70A = 0........
 000030 ===> 00119F68 00119F68 0011A410 0011A1A8 = ~.
 000040 ===> 0011A474 0011A6CA 00000000 00000000 =
 000050 ===> 00000000 00000000 00000000 00000000 =
 000060 ===> 00000000 00000000 00000000 00000000 =
 000070 ===> 00000000 00000000 00000000 00000000 =
 000080 ===> 00000000 00000000 F1F94BF4 F44BF3F7 = 19.44.3.
 000090 ===> C6C5C240 F2F26B40 F1F9F9F5 00000000 = FEB 22, 1995....
 0000A0 ===> C5D8E4C9 D3C1E3C5 D9C1D340 E3D9C9C1 = EQUILATERAL TRIA
 0000B0 ===> D5C7D3C5 E2000000 00C9E2D6 E2C3C5D3 = NGLES....ISOSCEL
 0000C0 ===> C5E240E3 D9C9C1D5 C7D3C5E2 40400000 = ES TRIANGLES ..
 0000D0 ===> 0000E2C3 C1D3C5D5 C540E3D9 C9C1D5C7 = ..SCALENE TRIANG
 0000E0 ===> D3C5E240 40404000 000000C9 D5E5C1D3 = LES INVAL
 0000F0 ===> C9C440E3 D9C9C1D5 C7D3C5E2 40404040 = ID TRIANGLES
 000100 ===> 00000000 00000000 00000000 00000000 =
 000110 ===> 00000000 00000000 00000000 00000000 =

5-52 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
If the address specified with the AT command is not a valid instruction (data or
privileged), a message is returned. Also, if the specified program has source, no
breakpoint is set and the message MODULE HAS SOURCE; USE XPEDITER
BREAKPOINT COMMANDS is displayed.

On the AT Display screen, the offset and the instruction pointer are highlighted,
indicating where the breakpoint is set. The message area contains the breakpoint address
and the instruction in hexadecimal and mnemonic form. If the AT command is used on
an address and not in a module loaded by XPEDITER/TSO, the compile date and time
displayed on the third line will be blank.

Accessing a Sourceless Subprogram

When your debugging session begins and your main program has source, the Source
display screen is displayed. You can set breakpoints in the regular manner on this screen.

Normally, breakpoints can be set in a subprogram by entering a fully qualified breakpoint
command or using the SOURCE or INTERCEPT commands to access the subprogram from
this screen. However, if the subprogram does not have source, the message NO SOURCE
LISTING INFORMATION FOUND FOR MODULE is displayed at the top of the source
display.

If you are not familiar with the program, you can use the MEMORY command to access
main storage and display the module in dump format on the Memory screen. For
example:

MEMORY TRIMAIN:

With the program displayed on the Memory screen, you can decide exactly where you
want to set breakpoints using the AT command.

If you are familiar with the application you are debugging, you can use the AT command
with the module/procedure name to set a breakpoint at the 0 displacement in the
module. For example:

AT TRIMAIN:

When the AT breakpoint is encountered, the AT Display screen shown in Figure 5-75 on
page 5-53 is displayed and program execution is paused at the specified offset.

Using XPEDITER/TSO Commands for Sourceless Debugging

The rules for using XPEDITER/TSO commands for sourceless debugging are as follows:

Primary Commands

None of the debugging commands, such as, AFTER, BEFORE, COUNT, SKIP, TRACE,
WHEN, PEEK, KEEP, GOTO, GO n, and DELETE are valid. The GO command is valid. All
other commands can be used.

Line Commands

The only valid line commands are X (eXclude) and T (Template). To insure proper results,
the rest of the line command area should be blanked out after entering the line
command.

Note: Typing over instructions with X’00A3’ will not be recognized as a breakpoint. A
S0C1 abend occurs when the typed over instruction is executed.

The following are examples of using some XPEDITER/TSO commands to debug a
sourceless program.

Debugging Interactively 5-53
Using the UP command on the AT Display screen scrolls the screen toward the beginning
of the module/procedure. Scrolling beyond the beginning of the module/procedure
displays negative offsets. Using the LOCATE * command scrolls to the current execution
point.

The GPREGS command can be used to open a modifiable window at the bottom of your
screen. The register values displayed can be changed by typing over the values. An
example of the GPREGS window is shown in Figure 5-75.

Figure 5-75. GPREGS Window on the AT Display Screen

Data and instruction areas can be typed over, as long as a breakpoint is not set on the
instruction being typed over.

The SHOW ACTIVE command can be entered to display a summary of general-purpose
register contents, PSW, and some control block information. The result of the SHOW
ACTIVE command is shown in Figure 5-76.

Figure 5-76. SHOW ACTIVE Display Screen

 ------------------------- XPEDITER/TSO - AT DISPLAY ---------------------------
 COMMAND ===> SCROLL ===> CSR
 PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 02/22/1995 COMP TIME: 19:44:00
 --- Before TRIMAIN --
BASE = 00119F68 0 - 2 - 4 - 6 - 8 - A - C - E - = 0-2-4-6-8-A-C-E-
 ******************************* TOP OF DATA **********************************
 000000 ===> 00ECD00C 185D05F0 4580F010 E3D9C9D4 = ..}..).0..0.TRIM
 000010 ===> C1C9D540 E5E2D9F1 0700989F F02407FF = AIN VSR1....0...
 000020 ===> 96021034 07FE41F0 000107FE 0011A70A = 0........
 000030 ===> 00119F68 00119F68 0011A410 0011A1A8 = ~.
 000040 ===> 0011A474 0011A6CA 00000000 00000000 =
 000050 ===> 00000000 00000000 00000000 00000000 =
 000060 ===> 00000000 00000000 00000000 00000000 =
 000070 ===> 00000000 00000000 00000000 00000000 =
 000080 ===> 00000000 00000000 F1F94BF4 F44BF3F7 = 19.44.3.
 000090 ===> C6C5C240 F2F26B40 F1F9F9F5 00000000 = FEB 22, 1995....
 0000A0 ===> C5D8E4C9 D3C1E3C5 D9C1D340 E3D9C9C1 = EQUILATERAL TRIA
 0000B0 ===> D5C7D3C5 E2000000 00C9E2D6 E2C3C5D3 = NGLES....ISOSCEL
 0000C0 ===> C5E240E3 D9C9C1D5 C7D3C5E2 40400000 = ES TRIANGLES ..
 0000D0 ===> 0000E2C3 C1D3C5D5 C540E3D9 C9C1D5C7 = ..SCALENE TRIANG
 GPREGS R0 ==> 0009D000 R1 ==> 80095CA0 R2 ==> 80110BFC R3 ==> 8009568A
 R4 ==> 0819EE90 R5 ==> 08192EC8 R6 ==> 00000000 R7 ==> 80142986
 R8 ==> 081A2DE4 R9 ==> 8818DECA R10 ==> 0009D000 R11 ==> 00110B00
 R12 ==> 80142710 R13 ==> 00140730 R14 ==> 0011303C R15 ==> 00119F6A

 ------------------------------ XPEDITER/TSO - SHOW ----------------------------
 COMMAND ===> SCROLL ===> CSR
 PROGRAM: TRIMAIN MODULE: TRIMAIN COMP DATE: 02/22/1995 COMP TIME: 19:44:00
 --- Before TRIMAIN --
***************************** TOP OF DATA **********************************
GPREGS R0 ==> 0009D000 R2 ==> 80095CA0 R2 ==> 80110BFC R3 ==> 8009568A
 R4 ==> 0819EE90 R5 ==> 08192EC8 R6 ==> 00000000 R7 ==> 80142986
 R8 ==> 081A2DE4 R9 ==> 8818DECA R10 ==> 0009D000 R11 ==> 00110B00
 R12 ==> 80142710 R13 ==> 00140730 R14 ==> 0011303C R15 ==> 00119F6A

PSW XRXXXTIE KEY CMWP SH CC PROGMASK AMODE INSTR ADDR
 00000111 8 1101 00 10 0000 0 00119F6A

INSTR
ADDRESS 00119F68 : 90ECD00C
OPCODE STM
OP1 R14 : 0011303C
 R12 : 80142710
OP2 0014073C : 80142986801422080009D000001406F880110BFC8009568A0819EE900
TCB 0088EA18
ASID 01A5
CVT 00FD44B0
JSCB 008FD1F4
TIOT 008DB000

5-54 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
The END command returns you to the previously displayed AT Display screen as shown
in Figure 5-75 on page 5-53.

The SHOW AT command can also be entered to display all the outstanding breakpoints
set by the AT command.

Use the DELETE AT command to remove all outstanding AT breakpoints.

Creating Pseudo-Assembler Source
XPEDITER/TSO allows you to interactively debug programs for which source is not
available (no source listing in the DDIO), such as old modules which were compiled
before XPEDITER was acquired. By entering the PSEUDOSOURCE command (commonly
abbreviated as PSEUDOSO, PSEUDO, or PS), you can display pseudo-assembler source on
the XPEDITER/TSO Source screen.

This feature enables you to debug main programs and subprograms in much the same
way as with XPEDITER’s interactive source level debugging. Test session setup and startup
is the same as for interactive debugging at the source level. Only minor differences occur
during the debugging session.

Pseudo-Source Creation for a Main Program

When program execution begins and the main program does not have source, the log is
automatically displayed with the message NO SOURCE LISTING DATA SET MEMBER
FOR procedure-name as shown in Figure 5-77.

Figure 5-77. No Source Message

You can enter the PSEUDO command on the LOG screen to request a pseudo-assembler
view of the object module. For more information on using the PSEUDO command, refer
to the XPEDITER/TSO and XPEDITER/IMS Reference Manual. In this example, you would enter
the command with the name of the target program as a parameter:

PSEUDO TRIMAINA

XPEDITER/TSO would create a pseudo-assembler view of the program and display it on
the Source screen as shown in Figure 5-78 on page 5-55.

-------------------------- XPEDITER/TSO - LOG ------------------------------
COMMAND ===> SCROLL ===> CSR
 NO SOURCE LISTING DATA SET MEMBER FOR TRIMAINA
-- Before TRIMAINA -
********************************* TOP OF DATA ******************************
+---
: JOB: SCTSO00
: XPEDITER/TSO RELEASE 07.04.00 CUSTOMER # 010000 STEP: TSOPROC
: DATE: 05/27/2004
: COMPUWARE CORPORATION TIME: 12.33.16
+---

 XPED TSO SPF
 TEST TRIMAINA
*** TRIMAINA FROM SCTSO11.TEST74.LOADLIB LINK 10/19/9
******************************** BOTTOM OF DATA ****************************

Debugging Interactively 5-55
Figure 5-78. Pseudo-Assembler on Source Screen

Each line of the pseudo-assembler source view is composed of a hex representation of the
instruction on the left, the assembler equivalent in the center, and a character
representation on the right. The screen is formatted the same as the standard view
presented when a DDIO source listing is available. From this screen, breakpoints can be
set and stepping initiated in the same way as when debugging an Assembler application
with source.

Note: The PSEUDO command can also be entered in an initial script.

Pseudo-Source Creation for a Subprogram

When your debugging session begins and your main program does have source, the
Source screen is displayed. You can set breakpoints in the regular way on this screen.

Normally, you would set breakpoints in a subprogram by entering a fully qualified
breakpoint command or by using the SOURCE or INTERCEPT commands to access the
subprogram from this screen. However, if the subprogram did not have source, the
message NO SOURCE LISTING INFORMATION FOUND FOR MODULE would be
displayed at the top of the source display.

You can use the PSEUDO command at this point (or before entering the SOURCE or
INTERCEPT command, if you know no source listing member exists) to bring up the
pseudo-assembler view. For example, if the subroutine TRISUB was linked into a multi-
CSECT object TRIPAK, the command would be entered as follows:

PSEUDO TRIPAK::TRISUB:

Debugging a Pseudo-Source Program

The PSEUDO command is used to generate a pseudo-assembler source view of a program.
Even if the original source used to create the program was a high-level language such as
COBOL or C, the pseudo-source view will be displayed as assembler.

XPEDITER/TSO analyzes the object code to construct an assembler interpretation.
Because this source view is an approximation of the assembler code corresponding to the
machine code, you should have assembler knowledge in order to verify and step through
the displayed image.

------------------------- XPEDITER/TSO - SOURCE ------------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: TRIMAIANA MODULE: TRIMAINA COMP DATE: 10/19/1999 COMP TIME:13:57:00
 ** END **

------ -- Before TRIMAINA ->
******************************** TOP OF MODULE ********************************
------ TRIMAINA CSECT
000000 90EC D00C STM R14,R12,12(R13) *..}.*
000004 18CF LR R12,R15 *..*
000006 41B0 C0F8 LA R11,248(,R12) *..{8*
00000A 50DB 0004 ST R13,4(R11) *&...*
00000E 50BD 0008 ST R11,8(R13) *&¨..*
000012 18DB LR R13,R11 *..*
000014 4100 C01C LA R0,28(,R12) *..{.*
000018 47F0 C024 B 36(,R12) *.0{.*
00001C DC CL6'TRITAD'
000022 4040 1B11 STH R4,2833(,R1) * ..*
000026 0A08 SVC 8 LOAD *..*
000028 5000 C1A0 ST R0,416(,R12) *&.A.*
00002C 4100 C034 LA R0,52(,R12) *..{.*

5-56 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
A DDIO source listing and a pseudo-assembler view cannot co-exist for a single program
during an XPEDITER test session. You can either use the DDIO source listing for a
program (with a TEST, INTERCEPT, or initial SOURCE command, for example), or create a
pseudo-assembler view for the program by entering the PSEUDO command. The
command that is entered first will determine which source is used for the rest of the
session.

Unlike when using the INTERCEPT command, when the pseudo-assembler view is first
displayed using the PSEUDO command, no breakpoints are set. You must set a breakpoint
in order to have execution pause in the desired module.

Before setting a breakpoint, you should verify that the assembler code is accurate. It is
possible for XPEDITER to have misinterpreted some data elements as instructions. This
may cause errors when setting breakpoints or stepping through the code, because
XPEDITER sometimes needs to place breakpoints on every instruction. To avoid this
problem, you need to make XPEDITER treat as data the code it previously identified as
being an instruction. This is done by entering the SET DATA command for the applicable
line. If you need to change the data line back to an instruction, enter the SET INSTR
command.

If data is misinterpreted as an instruction, it is possible for XPEDITER to lose track of the
program’s instruction boundaries. In this situation, you should enter the PSEUDO
command with the appropriate OFFSET parameter to indicate where XPEDITER should
restart its construction of a new assembler view. In the example shown in Figure 5-78 on
page 5-55, you need to prevent XPEDITER from treating the spaces after the literal
TRITAD as a STORE HALFWORD instruction. To do this, make XPEDITER analyze the
code again, beginning at offset 24, by entering the following command:

PS TRIMAINA 24

The new pseudo-assembler source generated by XPEDITER is shown in Figure 5-79.

Figure 5-79. Regenerated Pseudo-Assembler Source

When you are sure the pseudo-assembler view is accurate, you can start debugging using
all the commands you would normally use for a program with a matching DDIO source
listing. Primary and line commands can both be used, including BEFORE, AFTER,
COUNT, and TRACE. Only limited output will be displayed for data-related commands
such as PEEK and KEEP, because XPEDITER has no information about a data element’s
starting location, size, or data-type. The VERIFY and MEMORY commands can be used to
view the underlying storage, and you can enter the GPREGS command to display the

------------------------- XPEDITER/TSO - SOURCE ------------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: TRIMAIANA MODULE: TRIMAINA COMP DATE: 10/19/1999 COMP TIME:13:57:00
 ** END **

------ -- Before TRIMAINA ->
******************************** TOP OF MODULE ********************************
------ TRIMAINA CSECT
000000 90EC D00C STM R14,R12,12(R13) *..}.*
000004 18CF LR R12,R15 *..*
000006 41B0 C0F8 LA R11,248(,R12) *..{8*
00000A 50DB 0004 ST R13,4(R11) *&...*
00000E 50BD 0008 ST R11,8(R13) *&¨..*
000012 18DB LR R13,R11 *..*
000014 4100 C01C LA R0,28(,R12) *..{.*
000018 47F0 C024 B 36(,R12) *.0{.*
00001C DC CL6'TRITAD'
000022 DC CL2' '
000024 1B11 SR R1,R1 *..*
000026 0A08 SVC 8 LOAD *..*
000028 5000 C1A0 ST R0,416(,R12) *&.A.*

Debugging Interactively 5-57
current contents of the general purpose registers in a modifiable window at the bottom of
your screen. The SHOW ACTIVE command can also be entered to display a summary of
register contents, the PSW, and some control block information.

You may still want to use the AT command instead of the PSEUDO command in certain
situations, such as when you want to set a breakpoint in a memory location not
contained in a loaded module.

Displaying Environmental Data
If you have Abend-AID Release 7.0.2 or above installed at your site, you can use the AA
SNAP command to display an Abend-AID Snapshot report containing environment
specific run-time characteristics during a test session. If you have the VSAM, IDMS, IMS,
or DB2 Abend-AID options, the report displays subsystem-related debugging information
as follows:

IDMS
• CA-IDMS environment data (subschema, commit point, status)
• Subschema control (DB-Key information, current and error record/area)
• Database command trace (database call and status trace)
• DB-Key cross reference
• Current records (record name, DB-Key)
• Current sets (set name, record name, program reference, DB-Key)
• Current areas (area name, record name, mode, program reference, DB-Key).

DB2
• SQL return code
• Host variable
• SQL statement
• DB2 release, subsystem, authorization, attach mode
• Plan, bind date/time, isolation, acquire, release, validate
• DBRM, precompile date/time, host language, SQL escape, SQL decimal
• Host variables referenced
• Table and column definition
• SQLCA
• Plan dependencies.

IMS
• Function call

• Current PCB (PCB address, database name, segment level, status code, process
options, segment name, Key length, number of segments, Key feedback length)

• JCB database call trace (call type, status code, description)

• SSA.

VSAM
• Dataset ddname
• Access method
• Record and Key length
• File request type.

For an example of displaying a Snapshot report and browsing the data, refer to
“Displaying the Abend-AID Snapshot Report” on page 6-2.

5-58 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide

6-1

Chapter 6.

6Handling Run-Time Errors Chap 6

XPEDITER/TSO intercepts program abends and prevents the system from producing a
dump.

When an abend occurs in a program for which the source is available, execution
automatically pauses, the execution arrow points to the offending statement, and a
message indicating the action to take is displayed.

Figure 6-1 is an example of XPEDITER/TSO responding to an abend.

Figure 6-1. XPEDITER/TSO Responding to a S0C7 Abend

Note: When an abend occurs in a program that has not been compiled with the CSS
COBOL language processor (no source listing is available), the log is
automatically displayed with a message indicating the action to take. For
example:

ABEND IN MODULE WITHOUT SOURCE USE AA SNAP COMMAND FOR MORE INFORMATION

To assist you in determining the cause of the abend and how to correct the problem,
XPEDITER/TSO provides the following:

• If Abend-AID Release 7.0.2 or above is installed at your site, you can enter AA SNAP
to display an Abend-AID Snapshot report.

Note: In order to properly view the Snapshot report, the Abend-AID product must
have been installed with LANGTYP=USAUC in the GLOBAL table. Refer to
the MVS Abend-AID Reference Manual for additional information.

• Use the LOG command to display the diagnostic summary contained in the log.

• Use the HELP command to display help information about the abend.

• Use debugging commands to investigate the cause of the abend.

-------------------------- XPEDITER/TSO - SOURCE ------------------------------
COMMAND ===> SCROLL ===> CSR
 S0C7 ABEND ENCOUNTERED, USE "AA SNAP" COMMAND FOR ADDITIONAL INFORMATION
000011 05 A > ?? INVALID DECIMAL
000012 05 B > ?? INVALID DECIMAL
000006 01 A-N-B > ???? INVALID DECIMAL
 ** END **
------ --- Abend at TRITST:18 <>
000015 B PROCEDURE DIVISION USING TST-REC
000016 TYPE-OF-TRIANGLE.
000017 VALIDATE-TRIANGLE.
=====> ADD A B GIVING A-N-B.
000019 ADD A C GIVING A-N-C.
000020 ADD B C GIVING B-N-C.
000021 IF (B-N-C NOT > A) OR (A-N-C NOT > B) OR (A-N-B NOT > C)
000022 MOVE 4 TO TYPE-OF-TRIANGLE.

6-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Displaying the Abend-AID Snapshot Report
When an abend occurs in your program during an XPEDITER/TSO test session and
Abend-AID Release 7.0.2 or above is installed at your site, you can display an Abend-AID
Snapshot report. This report contains context sensitive diagnostic information. (The
report will not contain source support.)

In a nonabending situation, you can request the Snapshot report to display environment
specific run-time characteristics and subsystem-related debugging information for VSAM,
IDMS, IMS, and DB2 (if you have these Abend-AID options). Refer to “Displaying
Environmental Data” on page 5-57 for more information.

To display the Snapshot report, enter AA SNAP on the command line of any run-time
screen. The Snapshot report is formatted according to your terminal size (80 or 133) and
written to a temporary dataset DD called ABENDAID.

Note: If you want to save the abend information for printing, you must allocate the
ABENDAID DD to a permanent dataset. This dataset must be RECFM=VBA and
LRECL=125.

Figure 6-2 shows the header page of the Snapshot report:

Figure 6-2. Abend-AID Snapshot Report Header

Optionally, you can display a column template at the top of the report by using SET
COLS ON. The column template can be useful when viewing records or data. Enter SET
COLS OFF (the default) to turn off the column template.

Browsing the Snapshot Report

The Snapshot report can be browsed using the PF8 (DOWN) and PF7 (UP) keys. You can
also bypass the header page and go directly to a specific section of the Snapshot report
from the source display. For example, to go directly to the Diagnostic Section, you can
enter the following:

AA SNAP; FIND ’DIAGNOSTIC’

The Diagnostic Section of the report is displayed, as shown in Figure 6-3 on page 6-3.

 ------------------------- XPEDITER/TSO - BROWSE ------------------------------
 COMMAND ===> SCROLL ===> CSR
 PROGRAM: TRITST MODULE: TRIMAIN COMP DATE: 06/18/1997 COMP TIME: 18:05:01
 -- Abend at TRITST:18 ->
 SYS95054.T181542.RA000.FLGDAA1.R0134656 dd ABENDAID line 00000
********************************* TOP OF DATA *********************************
1 A B E N D - A I D S N A P S H O T PAGE 1
0THURSDAY 18 JUN 1997 941201-R08.00.04

 * A b e n d - A I D S n a p s h o t *
 * *
 * Copyright (c) 1976, 1994 by Compuware Corporation. *
 * Unpublished - Rights Reserved Under The Copyright *
 * Laws Of The United States. *
 * Licensed for use at:
 * YOUR COMPANY NAME *
 * Company Number: XXXXXX *

 Model - 9121 OPSYS - MVS/SP 5.1.0 Job - FLGDAA1
 CP FMID - HBB5510 Step - TSOPROC
 System - CW01 Time - 18.15.43
 DFSMS/MVS - V1R2M0
 JES2 - SP 5.1.0

Handling Run-Time Errors 6-3
Figure 6-3. Snapshot Report Diagnostic Section

When you have finished viewing the Snapshot report, press PF3 (END) to return to the
source display.l

If you inadvertently press PF3 (END) while viewing the Snapshot report, you can enter
BROWSE ABENDAID on the command line of the source or log display to redisplay the
Snapshot report.

Viewing the Log
XPEDITER/TSO records the cause of the abend, the exact location, and a diagnostic
summary in the log. To look at the log, enter LOG on the command line of the Source
display screen.

Note: If you have Abend-AID installed at your site, you can also display the log from the
Snapshot report. An example of the diagnostic summary in the log is shown in
Figure 6-4 on page 6-4.

 ------------------------- XPEDITER/TSO - BROWSE -------------------------------
 COMMAND ===> SCROLL ===> CSR
 CHARS 'DIAGNOSTIC' FOUND
 -- Abend at TRITST:18 ->
 SYS95054.T181542.RA000.FLGDAA1.R0134656 dd ABENDAID line 00000

 * Diagnostic Section *

 Both fields are in error

 * First field in error *

 The data causing the error is located in a temporary work field. The
 external decimal field cannot be located.

 * Second field in error *

 A Data Exception was caused by data referenced at displacement 001
 from the start of BLL cell 03. The field contains X'CD'. Refer to
 the data division map in the program listing to locate the field name.

 The second field causing the exception is located in a temporary work
 field in the TGT. The actual field in error is in the linkage section
 of program TRITST.

6-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 6-4. Diagnostic Summary in the Log

The first part of the diagnostic summary identifies the error message, PSW, data at PSW,
general-purpose registers, offset, and the module in which the error occurred.

The middle part shows the abend type, module name, statement number, offset,
paragraph name, and the failing verb. This information is followed by the module stack
that identifies the last call that took place.

The last part defines the problem and gives the next sequential instruction to be
executed in the Assembler format.

If desired, the load modules can also be displayed by entering SHOW MODULES.

Displaying HELP Information
The HELP command can be used to obtain further information to determine the cause
and possible resolution of the abend. Any of the most commonly occurring abends
(listed below) can be entered as a keyword with the HELP command.

SB14 S0C1 S0C7 S031 S806
SB37 S0C4 S001 S106
SD37 S0C5 S013 S213

Figure 6-5 on page 6-5 shows HELP information for a S0C7 abend.

 ------------------------- XPEDITER/TSO - LOG ----------------------------------
 COMMAND ===> SCROLL ===> CSR
 PROGRAM: TRITST MODULE: TRIMAIN COMP DATE: 08/23/1995 COMP TIME: 18:05:01
 --- Abend at TRITST:18 --
 GO
 XPD0439 RA105 SOC7 ABEND AT 0014DDE8 REASON CODE 00000007

 PSW AT TIME OF ERROR 078D0000 - 0014DDEE
 DATA AT PSW - FA10D20E D217F321 7000D20E
 GP REGISTERS AT ABEND 0 00000000 1 5014DFD4 2 0014B0C4 3 800C968
 4 0014B400 5 8014B078 6 0014B080 7 0014DB5
 8 8014B078 9 0014DF8E 10 0014DAB0 11 0014DDB
 12 0014DD98 13 0014DB68 14 0014DDB8 15 4014DF9
 INTERRUPT ADDRESS AT OFFSET 002E80 IN LOAD MODULE TRIMAIN

*** SOC7 ABEND IN USER MODULE TRITST AT STATE 000018 AT OFFSET 00032C
 IN PROC VALIDATE-TRIANGLE VERB ADD
*** ACTIVE APPLICATION MODULE AT TIME OF ABNORMAL TERMINATION IS TRITST ***
*** APPLICATION MODULE CONTROL HIERARCHY AT TIME OF ABNORMAL TERMINATION ***
LVL MODULE ENTRY MEMBER RETURN LOCATION FOR MOST RECENT CALL
 1 XPEDITER
 2 TRIMAIN TRIMAIN TRIMAIN STATE 000051 ANALYZE-NEXT-REC
 3 X TRITST TRITST TRIMAIN

 DATA EXCEPTION INTERRUPT INSTRUCTION AND OPERANDS
 MNEMONIC ZAP INSTRUCTION FA10D20ED217 OP1 00BA
 OP2 DC

Handling Run-Time Errors 6-5
Figure 6-5. HELP Information on S0C7

Analyzing the Problem
When an abend occurs, you can use XPEDITER/TSO debugging commands to investigate
the cause of the abend. For example, you can view the contents of the data referenced on
the statement causing the abend, analyze the data flow and control structure, and
optionally, review the path and data values that lead to the error.

Applying Fixes
Even when XPEDITER/TSO intercepts an abend, you have the opportunity to temporarily
apply fixes to the problem and resume execution as if the abend had never occurred. The
GO (PF12) command resumes execution. However, there may be times that you will not
be able to continue normal program execution until the abend is resolved.

Using all of the information provided by the Abend-AID Snapshot report, you can
experiment with possible solutions and test the fixes.

Obtaining a Memory Dump
If a dump is necessary, the SET DUMP ON command can be issued immediately to direct
XPEDITER/TSO to allow the dump to be written if one of the standard dump DD files
(SYSUDUMP, SYSMDUMP, or SYSABEND) is allocated to the test session. The dump file
can be dynamically allocated just prior to the issuance of the SET DUMP ON command or
could have been preallocated through various methods such as the File Allocation Utility
(FAU), the TSO ALLOCATE command, JCL if in Batch Connect, etc. (Refer to Appendix A,
“Using the File Allocation Utility”.)

 ------------------------- XPEDITER/TSO - HELP ---------------------------------
 COMMAND ===> SCROLL ===> CSR
 PROGRAM: TRITST MODULE: TRIMAIN COMP DATE: 06/18/1997 COMP TIME: 18:05:01
 --- Abend at TRITST:18 ->
********************************** TOP OF DATA ********************************
S0C7

Data in a field was of incorrect format for the instruction attempting to
process it.

POSSIBLE CAUSES

1. A data-element was not initialized.

2. JCL error resulted in the wrong file being read into the program.

3. MOVE at group level was executed to a COMP or COMP-3 field. No data
 conversion was performed on the element level.

4. The Linkage Section data item was improperly defined.

WHAT TO DO

1. PEEK data-elements in abending statement and MOVE valid data to the file

6-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide

7-1

Chapter 7.

7Debugging With XPEDITER/IMS Chap 7

XPEDITER/IMS, an IMS/DC testing and debugging product, executes Message Processing,
Fast Path, and Batch Message Processing programs in an IMS-dependent region within
your TSO address space. Operation of the product requires one logical TSO terminal and
one logical IMS terminal (can be an ATM terminal), both on the same CPU.
XPEDITER/IMS does not work with two IMS terminals.

XPEDITER/IMS is executed on Releases 3.1, 4.1, 5.1, 6.1, and 7.1 of IMS/VS.

XPEDITER/IMS does not support multiple IMS control regions that communicate with
one another. However, the product can be installed on each IMS system.

Starting XPEDITER/IMS
XPEDITER/IMS consists of menus and screens accessed through ISPF. XPEDITER/IMS
screens are viewed on the TSO terminal; the IMS application format screens are viewed
on the IMS terminal.

Before starting the session, prepare your programs (precompile, compile, and link edit)
with the Compuware Shared Services COBOL language processor. You can use the
XPEDITER/TSO online facilities to prepare your programs. Refer to “Preparing Your
Programs” on page 4-3 for additional information. For more information about
Compuware’s Shared Services, refer to the Compuware Shared Services User/Reference Guide.

1. Once you have a valid load module and DDIO dataset, log on to TSO and invoke
XPEDITER/TSO. Use the procedures that are in effect at your site.

2. From the XPEDITER/TSO Primary Menu, select option 2 (TSO) to display the
Environments Menu.

Note: If the Environments Menu is not displayed, access it by entering SETUP on
the command line of the test screen that is being displayed. On the Test
Setup Menu, enter option 0 (ENVIRONMENT).

3. Specify the appropriate environment, 8 (MPP) or 9 (BMP/IFP) on the Environments
Menu. The environment test screen for that environment is displayed.

4. On the environment test screen, enter the command SETUP to display the Setup
Menu.

5. Specify A (All) to review all your setup selections.

– Load libraries—user program libraries allocated as STEPLIB. Verify that the order
of concatenation is correct.

– DDIO dataset—library name should be the dataset name specified on the
CWPDDIO DD statement in your XPEDITER compile step.

– Test script libraries.

– Test session log dataset.

– Test session script dataset.

– DB2 system names and DSNLOAD datasets.

– PANEXEC defaults (if installed).

7-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
– PSB and DBD libraries (GSAM only).

– IMS preload list.

– IMS authorized load libraries.

– IMS region ID and PARM strings—PARM fields set up at install time can be
changed.

6. If everything is correct, press PF3 from the Setup Menu to return to the environment
test screen.

7. Complete the environment test screen as described in “Debugging an MPP Program”
on page 7-2 or “Debugging a BMP/IFP Program” on page 7-7.

Note: XPEDITER/IMS environment test screens shown as examples in this section
are fully described in Appendix B, “XPEDITER/TSO Environment Test
Screens”.

8. Wait for the intercepts to be set, then log on to IMS and enter the transaction(s).

9. View the XPEDITER/IMS source display on the TSO terminal. Switch to the IMS
terminal for all input and output operations.

10. At the end of each MPP transaction, enter GO to continue debugging or EXIT to
terminate.

11. At the end of a Batch Message Processing (BMP) or Interactive Fast Path (IFP)
program, you are returned to the BMP/IFP screen. Press Enter to go into the same
debugging session again, or enter END to return to the Primary Menu.

Debugging an MPP Program

Select option 8 from the Environments Menu to debug an MPP program. The MPP
Program environment test screen shown in Figure 7-1 is displayed. The MPP screen lets
you set up environment parameters for debugging a program in an IMS Message Region.
When you identify the transactions to be debugged and initiate the session,
XPEDITER/IMS attaches the IMS message region within the TSO address space.

Enter END to terminate any display. HELP is also available from any screen.

Figure 7-1. MPP Program Test Screen

 Profile: DEFAULT -------- XPEDITER/TSO - MPP (2.8) -------------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 INter (Display Intercepts)
 PROFile (Display Profile List) DOwn (Scroll Down)

 INTERCEPTS Row 1 of 3

 PROGRAM TRANCODE INITSCR POSTSCR START MAX ------------ DATA ------------
> TRIMPP
> XPEDTRAN
>

 IMS USERID ===> PFHABC0 Retain Breakpoints? ===> NO

 NBA ===> 0 (Normal Buffer Allocation)
 OBA ===> 0 (Overflow Buffer Allocation)

 File List/JCL Member ===>
 Code Coverage Test? ===> NO Test Unattended? ===> NO
 Is This a DB2 Test? ===> NO System ===>

 Press ENTER to process or enter END command to terminate

Debugging With XPEDITER/IMS 7-3
The following commands are valid on the MPP Program test screen:

SEtup

Displays the Setup Menu from which you can select screens for specifying load
libraries, DDIO datasets, and so on.

Log

Browses the session log after you execute a program. The log file contains a record of
the commands that were entered during the debugging session and the responses to
them.

INter

Displays the Intercepts screen showing you what IDs are logged on to
XPEDITER/IMS, what programs are being used, and so on.

DOwn

Scrolls to a continuation MPP screen. From this screen, UP is available for returning
to the first debugging screen.

PROFile

Displays the available Profile options in a file where you can select, delete, copy,
rename, and Use the profile of your choice. It also lets you "merge" or "copy" another
user(s) profile into your own.

ALLOC

This command takes you to the File Allocation Utility (FAU) screens to create a file
allocation list, which your program may require for the debugging session.

The fields on the MPP Program test screen are:

PROGRAM

Required if TRANCODE is not specified. Used to identify which programs are to be
debugged by XPEDITER/IMS. You can enter the load module name in this field or the
transaction code in the TRANCODE field, or supply values for both fields. If you
enter only the program name, the program must be associated with only one
transaction. If the program is associated with multiple transactions, then the
transactions that are to be debugged must be entered in the TRANCODE field and the
program name can be omitted from the PROGRAM field.

Three programs or transaction codes can be specified on the first MPP screen. If you
fill the first screen and need more space, enter DOWN (PF8), and a second
(continuation) screen is displayed. Refer to Figure 7-2 on page 7-4.

Once the second screen is full, you can scroll down to a third screen. The third screen
is not shown in this chapter. Notice that on the second (and subsequent screens), the
UP command is available in addition to the DOWN command.

7-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 7-2. Second MPP Program Test Screen

TRANCODE

Used to identify which transactions are to be debugged by XPEDITER/IMS. You can
enter the transaction code in this field or the load module name in the PROGRAM
field, or enter values for both fields.

This field is required if PROGRAM is not specified or if multiple transactions are
associated with the program.

INITSCR

The member name of the script in the INCLUDE library specified on the Setup panel.
The INITSCR field can be typed over to specify a test script member which can be
processed at the beginning of a debugging session.

When using XPEDITER/IMS, enter the member name of a test script if you want to
execute a predefined command stream at the beginning of the debugging session. This
member will be executed after the inclusion of the Site-wide script member
@@SITE@@, if defined.

POSTSCR

Enter the member name of a test script if you want to execute a predefined command
stream at the end of the debugging session.

START

Enter up to four digits to specify the occurrence of the program invocation on which
the intercept is to begin. By default, program intercept begins on the first occurrence.
When the program is intercepted, the debugging session is initiated and the source is
displayed.

MAX

Enter up to four digits to specify the maximum number of times the program
intercept is to be processed. If this field is left blank, the value defaults to an infinite
number. If you enter an EXIT command and there are still intercepts remaining,
those intercepts are ignored.

DATA

Specify up to 30 bytes of data from the IMS transaction you want to debug.

The DATA field is only active if IMS User ID/Data Value Intercept Support is enabled.
See the XPEDITER/TSO and XPEDITER/IMS Installation Guide for more details.

 Profile: DEFAULT --------- XPEDITER/TSO - MPP (2.8) -------------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 INter (Display Intercepts)
 PROFile (Display Profile List) UP (Scroll Up) DOwn (Scroll Down)

 INTERCEPTS Row 1 of 11

 PROGRAM TRANCODE INITSCR POSTSCR START MAX ------------ DATA ------------
> TRIMPP
> XPEDTRAN
>
>
>
>
>
>
>
>
>

 Press ENTER to process or enter END command to terminate

Debugging With XPEDITER/IMS 7-5
Note: This field cannot contain the , (comma) or ¢ (cent) characters.

IMS USERID

Specify the ID of the IMS user issuing the IMS transaction you want to debug. If IMS
User ID/Data Value Intercept Support is enabled, you can enter an asterisk (*) to
specify a generic match on any user ID.

The IMS USERID field is only active if either IMS User ID Support or IMS User
ID/Data Value Intercept Support is enabled. See the XPEDITER/TSO and XPEDITER/IMS
Installation Guide for more details.

Note: If XPEDITER/Code Coverage is active, this field is also used to record the IMS
user ID in the Code Coverage Repository. If an asterisk is specified, the TSO
user ID will be recorded.

Retain Breakpoints?

If you want XPEDITER to retain breakpoints from one iteration of an IMS program or
transaction to the next, enter YES in this field. Before breakpoints, after breakpoints,
counts, skips, traces, and when conditions from the previous test iteration will be
reapplied. Count values will accumulate across iterations, but maximum execution
count limits are not preserved. Keeps and inserted lines are not retained.

The default is NO and will result in each iteration starting with only before and after
breakpoints.

XPEDITER/Code Coverage counters and breakpoints, where applicable, are
unaffected by this feature.

NBA

Enter the Normal Buffer Allocation (NBA), up to two digits. The default value is 0.

OBA

Enter the Overflow Buffer Allocation (OBA), up to two digits. The default value is 0.

Note: Note: Values are inserted in the PARM string when the IMS region is attached.

File List/JCL Member

Enter the dataset name that contains the file list, CLIST, or JCL. The File Allocation
Utility (FAU) preallocates files and databases that will be processed by the program
upon entry to the debugging session.

If the member name of a PDS is omitted, a member list is displayed.

If the dataset contains a CLIST, XPEDITER/IMS immediately executes it and begins
the debugging session. If the dataset contains a file list or JCL, the FAU is invoked to
dynamically allocate the specified files before beginning the debugging session. Refer
to Appendix A, “Using the File Allocation Utility” for detailed information about the
FAU.

Note: If your site does not use OS/VS files for input or output, you do not have to
make an entry in the File List/JCL Member field.

Code Coverage Test?

Enter YES if XPEDITER/Code Coverage data should be collected for this test. The
default value is NO.

Note: The Code Coverage option is only available if you have purchased
XPEDITER/Code Coverage.

7-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Test Unattended?

Enter YES in the ’Test Unattended?’ field to run in Unattended mode. The default
value is NO. In unattended mode, after the XPEDITER/IMS Message Processing
Region (MPR) is attached, only XPEDITER commands are processed in the Initial
Script, Post Script, and Abend Script. The TSO terminal remains locked and
XPEDITER commands are not allowed from the terminal. When you are finished
testing in the XPEDITER/IMS MPR, the MPR may be stopped and the TSO terminal
unlocked by using either the XPEDITER Stop Region transaction, XPST, or the
XPEDITER Stop Region BMP procedure XPSTOP. Refer to “Stopping the
XPEDITER/IMS Dependent Region” on page 7-13.

Is This a DB2 Test?

Enter YES if the program executes EXEC SQL statements. The default value is NO.

System

Enter the DB2 subsystem name if the program executes EXEC SQL statements. The
subsystem name depends on the release level of DB2 and is assigned at the time of
installation.

When entries for the screen are complete and you press Enter, the screen clears. If the
intercepts are set, the following messages appear on the screen:

THE IMS INTERCEPTS ARE BEING SET
INTERCEPTS SET - STARTING THE IMS REGION
THE TEST TRANSACTION CAN BE ENTERED

The terminal is then locked. If an error is encountered, however, the intercepts are not
set and you are returned to the test screen. A message indicating an error occurred is
displayed on the message line. You can access the log for more information.

Note: There are several reasons the intercepts might not be set. For example:

• You may have entered a program type other than TP (Message Processing Program).

• The program may be TP, but someone else is debugging the same transaction. Unless
IMS User ID Support or IMS User ID/Data Value Intercept Support is enabled, two
users cannot debug the same transaction at the same time. XPEDITER/IMS changes
the class code of each transaction, but it does not change the high-level program
associated with the transaction. Therefore, if the transaction is being used by another
person, you receive an error message.

If the intercepts are set successfully, go to the IMS terminal and start the transaction you
want to debug by entering the transaction code that invokes your program. Note that
you should invoke the program the way you would without XPEDITER/IMS; e.g., by
going through a signon screen or another transaction. If a format screen is invoked, enter
any data needed by the transaction.

When you press Enter, IMS schedules the transaction for execution and locks your
terminal if it is in response mode. Return to the TSO terminal.

If you have a source listing member for the high-level program, your source will be dis-
played. Refer to Chapter 5, “Debugging Interactively” for information on how to
interactively debug a program with source. All interactive XPEDITER/TSO commands are
valid except USE and RETEST. If you do not have a source listing member for the high-
level program, the log is displayed with a message indicating that the program does not
have a source listing member. Refer to “Debugging a Sourceless Program” on page 5-50
for information on how to interactively debug a program without a source listing
member.

To enter or review data at any point in execution, go to the IMS terminal.

At the TEST COMPLETED message, you can enter GO to retest this transaction or test
another one, or enter EXIT to return to the MPP screen. At the end of the debugging

Debugging With XPEDITER/IMS 7-7
session, the log is available for viewing. You can also save a script of the commands
entered for future use.

IMS Conversational Transaction Considerations

To facilitate IMS user ID support, XPEDITER/IMS creates a clone of the original IMS
transaction, which it then executes in an XPEDITER MPR. Because cloned transactions
each have a unique transaction code, multiple iterations of a transaction can coexist
without lockout occurring. This cloning process takes place on the first execution of a
transaction.

If you do not want XPEDITER to intercept the first iteration of a conversational
transaction, do the following:

• Initiate XPEDITER before the transaction begins
• Specify a starting transaction number.

At the first iteration, XPEDITER will create a clone of the transaction, but the actual
debugging session will not start until the specified starting iteration.

After you enter the EXIT command to end your session, you must also enter /EXIT to end
the original IMS transaction. This is because XPEDITER has already torn down the MPR
used for the transaction’s clone. If not ended manually, the transaction could hang
because there is no longer an XPEDITER MPR to process it.

Debugging a BMP/IFP Program

After selecting option 9 from the Environments Menu to debug a BMP or Fast Path
program, the BMP/IFP Program screen shown in Figure 7-3 on page 7-7 is displayed. The
BMP/IFP screen lets you set up the parameters to test and debug a program in an IMS,
BMP, or Fast Path Region. When you identify the transactions to be debugged and initiate
a session, XPEDITER/IMS attaches the IMS message region within the TSO address space.

The commands (except DOWN) described in “Debugging an MPP Program” on page 7-2
can also be entered on this screen.

Figure 7-3. BMP/IFP Program Screen

The fields on the BMP/IFP screen are:

 Profile: DEFAULT ------- XPEDITER/TSO - BMP/IFP (2.9) -----------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 INter (Display Intercepts)
 PROFile (Display Profile List)
 TEST SELECTION CRITERIA:

 Program ===> TRIFP
 PSB ===> TRIFP
 TRAN CODE ===>

 Initial Script ===>
 Post Script ===>

 NBA ===> 0 (Normal Buffer Allocation)
 OBA ===> 0 (Overflow Buffer Allocation)

 File List/JCL Member ===>

 Code Coverage Test? ===> NO
 Is This a DB2 Test? ===> NO System ===>

 Press ENTER to process or enter END command to terminate

7-8 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Program

Required. Used to identify which program is to be intercepted and debugged by
XPEDITER/IMS. You must enter the load module name in this field or supply values
for both this field and the TRAN CODE field. XPEDITER inserts this value into the
program subparameter for the parameter it passes to IMS.

PSB

Required. Enter the program specification block associated with the program you are
debugging. XPEDITER inserts the specified value into the BMP parameter passed to
the IMS driver program.

TRAN CODE

Used with a BMP to provide the name of a message queue to be processed by the
BMP. This field is not used with an IFP program.

Initial Script

The member name of the script in the INCLUDE library specified on the Setup panel.
The INITSCR field can be typed over to specify a test script member which can be
processed at the beginning of a debugging session.

Enter the member name of a test script if you want to execute a predefined command
stream at the beginning of the debugging session. This member will be executed after
the inclusion of the Site-wide script member @@SITE@@, if defined.

Post Script

Enter the member name of a test script if you want to execute a predefined command
stream at the end of the debugging session.

NBA

Enter the Normal Buffer Allocation (NBA), up to two digits.

OBA

Enter the Overflow Buffer Allocation (OBA), up to two digits.

Note: The values are inserted in the PARM string when the IMS region is attached.

File List/JCL Member

Enter the dataset name that contains the file list, CLIST, or JCL. The File Allocation
Utility (FAU) preallocates files and databases that will be processed by the program
upon entry to the debugging session.

If the member name of a PDS is omitted, a member list is displayed. If the dataset
contains a CLIST, XPEDITER/IMS immediately executes it and begins the debugging
session. If the dataset contains a file list or JCL, the FAU is invoked to dynamically
allocate the specified files before beginning the debugging session. Refer to Appendix
A, “Using the File Allocation Utility” for detailed information about the FAU.

Note: If your site does not use OS/VS files for input or output or GSAM databases,
do not make an entry in the File List/JCL Member field.

Code Coverage Test?

Enter YES if XPEDITER/Code Coverage data should be collected for this test. The
default value is NO.

Note: The Code Coverage option is only available if you have purchased
XPEDITER/Code Coverage.

Is This a DB2 Test?

Enter YES if the program executes EXEC SQL statements. The default value is NO.

Debugging With XPEDITER/IMS 7-9
System

Enter the DB2 subsystem name if the program executes EXEC SQL statements. The
subsystem name depends on the release level of DB2 and is assigned at the time of
installation.

After typing in all required values, press Enter to initiate the debugging session. The
screen will be cleared and, if the intercepts are set, the following messages will be
displayed:

THE IMS INTERCEPTS ARE BEING SET
INTERCEPTS SET - STARTING THE IMS REGION

The terminal is then locked until the screen changes. If an error is encountered, you are
returned to the test screen. A message indicating an error occurred is displayed on the
message line. You can access the log for more information.

When the intercepts are set, go to the IMS terminal and begin the transaction you want
to debug by entering the transaction code that invokes your program. Note that you
should invoke the program in the usual way (without XPEDITER/IMS); e.g., going
through a sign-on screen or other transaction if necessary. Once the format screen
appears, you can enter any data needed by the transaction. IMS schedules the transaction
for execution, then locks the IMS terminal if it is in response mode. Return to the TSO
terminal.

Note: If you are debugging a non-Wait-For-Input message-driven BMP, the transaction
for the program must be entered before the first GU to the message queue is
executed.

If you have a source listing member for the high-level program, your source will be
displayed. Refer to Chapter 5, “Debugging Interactively” for additional information on
how to interactively debug a program with source. All interactive XPEDITER/TSO
commands are valid except USE and RETEST.

If you do not have a source listing member for the high-level program, the log is
displayed with a message indicating that the program does not have a source listing
member. Refer to “Debugging a Sourceless Program” on page 5-50 for information on
how to interactively debug a program without a source listing member.

To enter or review data at any point in execution, go to the IMS terminal.

To end a BMP debugging session, type EXIT. To end an Interactive Fast Path (IFP) de-
bugging session, the directions are different. You can type EXIT if you have a breakpoint.
If the Interactive Fast Path (IFP) program is waiting for input from the terminal, the IFP
region may be stopped and the TSO terminal unlocked by using either the XPEDITER
Stop Region transaction, XPST, or the XPEDITER Stop Region BMP procedure XPSTOP.
Refer to “Stopping the XPEDITER/IMS Dependent Region” on page 7-13.

When the debugging session is terminated, you are returned to the BMP/IFP screen. At
this point, log and script datasets are available. You can press Enter to go into the same
debugging session again, or type END to go back to the Environments Menu.

What to Do When Intercepts Cannot Be Set
When intercepts cannot be set and the message MAX USERS is displayed on the test
screen, enter INTER on the command line to look at the Intercepts screen, shown in
Figure 7-4. The Number Of Available Class Codes field is zero (0), indicating that the
maximum number of users are testing with XPEDITER/IMS.

The Intercepts screen provides valuable information regarding the use of
XPEDITER/IMS—how many users can still test using XPEDITER/IMS, what

7-10 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
programs/transactions are being tested, and other information connected with the
program and the transaction code.

Figure 7-4. Intercepts Screen

The Intercepts screen does not contain any input fields. All of the information is
displayed for you. The fields on the screen are:

Number Of Available Class Codes

The number of class codes available. This field tells you how many more people can
run an MPP test. Notice that Figure 7-4 on page 7-10 displays the number of class
codes available for use as zero (0), indicating that the maximum number of MPP
users are currently testing with XPEDITER/IMS.

Current IMSID

The name of the IMS control region with which you are communicating.

USERID

The user ID of the person running the test.

TRAN CODE

The transaction code associated with the program, if one was used.

PROGRAM

The name of the program being tested.

TYPE

The type of program being tested.

PSB

The PSB name associated with the program. Often, this name is the same as the
program name.

OLD CLASS

The original class code of the user’s transaction.

NEW CLASS

The XPEDITER/IMS reserved class code for the transaction. XPEDITER/IMS reassigns
the class codes for Message Processing transactions.

Profile: DEFAULT ------------ INTERCEPTS ------------------- ROW 1 TO 14 OF 14
COMMAND ===> SCROLL ===> PAGE

 Number Of Available Class Codes: 0 Current IMSID: IMSA
 CLASS
 USERID TRAN CODE PROGRAM TYPE PSB OLD NEW IMSID
======== ========= ======== ==== ========= === === =====
ASJUSR1 XPEDTRAN XPEDTRAN TP XPEDTRAN 002 045 IMSA
ASJUSR1 XPE1 XPEDTRA1 TP XPEDTRA1 004 045 IMSA
ASJUSR1 XPE2 XPEDTRA2 TP XPEDTRA2 005 045 IMSA
ASJUSR2 XPEDBMP1 BMP XPEDPSB1 IMSA
ASJUSR3 XPE3 XPEDBMP2 BMP XPEDPSB2 IMSA
ASJUSR4 XPE4 XPEDTRA4 TP XPEDTRA4 004 016 IMSA
ASJUSR5 XPE5 XPEDTRA5 TP XPEDTRA5 004 018 IMSA
ASJUSR6 XFP1 XPEDFP1 IFP FASTPAT1 001 IMSA
ASJUSR7 XFP2 XPEDFP2 IFP FASTPAT2 001 IMSA
ASJUSR8 XPEDBMP3 BMP XPEDBMP IMSA
ASJUSR9 XPE6 XPEDTRA6 TP XPEDTRA6 004 019 IMSA
ASJUSR9 XPE7 XPEDTRA7 TP XPEDTRA7 005 019 IMSA
ASJUSR9 XPE8 XPEDTRA8 TP XPEDTRA8 005 019 IMSA
ASJUSR10 XPEDBMP4 BMP XPEDPSB2

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Debugging With XPEDITER/IMS 7-11
IMSID

The name of the IMS control region with which the IMS user programs
communicate. This name does not have to be the current IMSID.

Functions Supported
Database support is available with XPEDITER/IMS through the IMS control region. All
databases are supported, along with the following types of transactions:

• Conversational and nonconversational

• Response and nonresponse mode

• Wait-for-Input and non-Wait-For-Input

The type of transaction you can process is determined by the way your IMS system is
defined.

Conversational and Nonconversational Transactions

Programs that process nonconversational transactions have no knowledge of previous
transactions or responses. Programs that process conversational transactions retain
knowledge of each transaction in a scratch pad area. When each succeeding transaction
is received, the scratch pad area is read to determine what happened during the previous
execution of that program.

In XPEDITER/IMS, the two transaction types are processed the same way—there is no
difference between the two.

Response Mode and Nonresponse Mode

When response mode is in effect, IMS does not accept any input from the
communication line or terminal until the program has sent a response to the previous
input message. The originating terminal is unusable (i.e., the keyboard locks) until a
reply is sent back to the terminal.

When nonresponse mode is in effect, the keyboard is not locked. Multiple requests can
be sent before a response is received.

WFI and Non-WFI Transactions

When a program is defined as processing Wait-For-Input (WFI) transactions, the program
remains in main storage, even when there are no more messages for it to process. This
ensures that the program and region are immediately available when a transaction comes
in.

If a program is defined as processing non-Wait-For-Input (non-WFI) transactions, the
program can process one or more transactions and end, then have to start again when
another transaction is received for processing.

Types of Programs You Can Debug
With XPEDITER/IMS, you can debug three types of programs:

• Message Processing Programs (MPPs)

• Batch Message Processing (BMP) Programs

• Message-driven Interactive Fast Path (IFP) Programs

7-12 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
These three types of programs can access various resources under XPEDITER/IMS.
Available to them are full function databases, DB2, GSAM (BMP only), and Fast Path
databases.

Message Processing Programs

The primary purpose of MPPs is to quickly process your requests from the terminal or
from another application program. Ideally, the requests are small and processing is set up
to respond to them quickly. MPPs process messages as their input and send messages as
responses.

An MPP can access full function databases, Fast Path databases, and DB2 databases. An
MPP cannot access GSAM databases.

In XPEDITER/IMS, multiple MPP transactions can be debugged in the same session.

Batch Message Processing Programs

You might use a BMP program when processing time is long, but an immediate response
is not required. There are two types of BMP programs—message-driven and nonmessage-
driven. A message-driven BMP program is used to process information received from a
terminal or other program, but held by IMS in a message queue.

A nonmessage-driven program is often used when no access to messages is required. It is
also typically a long-running program, used when you have a large number of updates to
do or when running a report.

Both types of BMP programs can access OS/VS files, GSAM databases, full function
databases, Fast Path databases, and DB2 databases.

In XPEDITER/IMS, a BMP program is executed in its own region, and when the program
is terminated, the region is also terminated.

Fast Path Programs

An IFP program functions the same way an MPP does, but it is scheduled by IMS in a
manner similar to a BMP program. An IFP program increases the performance of certain
types of database applications. It provides efficient access to large volumes of data that
are broken up into areas that can be accessed independently of each other.

Note: IFP programs, like MPP and BMP programs, can access Fast Path databases, as well
as full function databases and DB2 databases.

In XPEDITER/IMS, an IFP program is executed in a Fast Path region, and when the
program is terminated, so is the region.

Using XPEDITER/IMS Effectively
Some information in the following areas can help you run MPP, BMP, and IFP debugging
sessions effectively:

• MPP test setup
• Scheduling difficulties
• Interrupting a debugging session
• Fast Path considerations.

Debugging With XPEDITER/IMS 7-13
MPP Test Setup

For an MPP debugging session, if a PSB is defined to your IMS system as capable of
handling more than one transaction, you must enter the specific transaction code you
want to debug.

Scheduling Difficulties

There are two XPEDITER/IMS capabilities that can help if you are unable to schedule a
transaction or program:

• The Intercepts display invoked by the INTER command on your test screen
• The session log

When you cannot schedule a particular transaction, another person may be using it. The
transaction a user sets up, either by entering a transaction code (MPP, BMP, or IFP) or
through the PSB name (IFP) or program name (MPP), is allocated to that user for the
duration of the session. The Intercepts display tells you the transactions that are
allocated and the users to whom they are allocated.

XPEDITER/IMS records in the log many conditions that prevent a transaction or program
from being scheduled. If, after setting intercepts, you still receive the test screen, browse
the log for more information. XPEDITER/IMS can determine whether a program or
transaction is locked or stopped, or not able to be scheduled for other reasons.
XPEDITER/IMS can also capture IMS scheduling abends, which are noted in the log.
Without XPEDITER/IMS, these conditions can cause your IMS terminal to lock or not
respond, requiring master terminal operator intervention to find the cause of the
problem.

Stopping the XPEDITER/IMS Dependent Region

An XPEDITER/IMS Dependent Region is categorized as: (1) an MPP region, (2) a BMP
region, or (3) an IFP region. There are several different ways of stopping an
XPEDITER/IMS Dependent Region. The circumstances depend on whether the dependent
region is stopped at an XPEDITER breakpoint, the dependent region is in a CPU loop, or
the dependent region is waiting for the next input message.

If the region is stopped at an XPEDITER breakpoint, you may enter the XPEDITER EXIT
command to stop the XPEDITER/IMS dependent region. Before entering the EXIT
command, you may roll back any/all uncommitted IMS database updates, DB2 table
updates, and system generated messages by issuing the following command:

DLI ROLB IOPCB

If the XPEDITER/TSO terminal session is not available, the region may be stopped by
using the XPEDITER/IMS Detach Region Facility. Refer to the “XPEDITER/IMS Detach
Region Facility” on page 7-15.

If the region is in a CPU loop, you may use the Attn key to stop the XPEDITER/IMS
dependent region. You may press the Attn key once and wait for XPEDITER/IMS to
process the attention interrupt. Attention key processing can be delayed under certain
pre-defined conditions. For example, if the Attn key is pressed while the XPEDITER/IMS
dependent region is executing a DL/I database call or waiting for an input message,
attention processing is deferred.

If an MPP or IFP region is waiting for the next input message, the XPEDITER/IMS
dependent region may be stopped by using either the XPEDITER Stop Region transaction,
trancode XPST, or the XPEDITER Stop Region BMP procedure XPSTOP.

To stop the region from an IMS terminal, enter trancode XPST. Transaction XPST displays
a formatted screen. On the screen, a field is displayed for entering the Jobname or TSO-ID
to be stopped. When the screen is displayed, this field will contain your IMS logon id,

7-14 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
since many users logon to IMS with their TSO ID. If the installation allows it, you may
override the default Jobname shown on the screen with a completely different Jobname
of an XPEDITER MPP or IFP region. When you press Enter while accessing the formatted
screen, the transaction will issue the following IMS Automated Operator Interface
command: /STOP REG reg# where reg# is the region identifier associated with the
specified Jobname.

To stop the region from a TSO terminal, submit a job which executes your site’s BMP
procedure to run the XPSTOP program. The XPEDITER jobname or TSO Userid of the
region to be cancelled is specified on either the IMS APARM or in the first eight bytes of a
control card in a file with DDNAME XPPARM. The APARM technique is usually more
convenient; however, releases of IMS prior to IMS 3.1 do not support APARM.

The following JCL examples may be used to invoke a BMP job to stop the TSO Userid
TSOUSR1. IMSBATCH is an IBM supplied IMS procedure that is included in the IMS
PROCLIB. Your Systems programmer may have created a version of this procedure which
is modified for your site. In both cases, the programs executed by XPSTOP must be made
available to the region by placing the program code in a library pointed to be the
STEPLIB DD statement. This can be done by copying XPSTOP, ADSIM015, and ADSRA093
from the XPEDITER/TSO LOADLIB to a user library included in STEPLIB or by adding the
XPEDITER/TSO LOADLIB to the STEPLIB concatenation.

The two JCL examples are displayed as follows:

// Your jobcard
//stepname EXEC IMSBATCH,MBR=XPSTOP,PSB=XPSTOP,IN=XPSTOP,
// APARM=TSOUSR1
//procedurestepname.STEPLIB DD (existing DD statement)
// DD DSN=COMPWARE.XT.SLXTLOAD
//XPPRINT DD SYSOUT=*
//
 or

// Your jobcard
//stepname EXEC IMSBATCH,MBR=XPSTOP,PSB=XPSTOP,IN=XPSTOP
//procedurestepname.STEPLIB DD (existing DD statement)
// DD DSN=COMPWARE.XT.SLXTLOAD
//XPPRINT DD SYSOUT=*
//XPPARM DD *
TSOUSR1
//

Fast Path Caution

If your IMS system includes a Fast Path exit routine to route transactions to programs not
originally genned to handle these transactions, you can experience the following
difficulties:

• The program being executed can receive a transaction you did not enter.

• A transaction you entered can be routed to another program in another region. In
this case, no source code displayed. If the other program is active, the transaction is
processed or rejected with an appropriate message.

Abends and Recovery Processing
If an abend occurs, XPEDITER/IMS provides the following benefits:

• If the application program abends, XPEDITER/IMS intercepts the abend and displays
a message indicating that information about the abend can be viewed by accessing
the Abend-AID Snapshot report (only if Abend-AID Release 7.0.2 or above is
installed) or the log.

Debugging With XPEDITER/IMS 7-15
• You can generate a memory dump in the same manner as XPEDITER/TSO. If a dump
is necessary, the SET DUMP ON command can be issued immediately to direct
XPEDITER/TSO to allow the dump to be written if one of the standard dump DD files
(SYSUDUMP, SYSMDUMP, or SYSABEND) is allocated to the test session. The dump
file can be dynamically allocated just prior to the issuance of the SET DUMP ON
command or could have been preallocated through various methods such as the File
Allocation Utility (FAU), the TSO ALLOCATE command, JCL if in Batch Connect, etc.
(Refer to Appendix A, “Using the File Allocation Utility”.)

• If the IMS dependent region comes down for any reason, XPEDITER/IMS intercepts
the abend.

Note: When debugging a message-driven transaction, IMS generates a U468 abend if
you exit the session before the first GU to the message queue. If the transaction is
in response mode, the terminal node must be restarted by the appropriate
operator.

If you require a dump from an XPEDITER/IMS debugging session, you must allocate the
ddname XPIMSDMP to bypass the XPEDITER abend interception. Since this is a TSO
allocation, it can be entered from the command line as follows:

TSO ALLOC FI(XPIMSDMP) DUMMY

It can also be allocated from within XPEDITER/IMS by issuing the ALLOC command and
using the File Allocation Utility.

XPEDITER/IMS Detach Region Facility
When using XPEDITER in an IMS environment, there can be times when you need to
force the end of an XPEDITER test; e.g., a programmer goes home without ending the
test. In some releases of IMS, the TSO ID cannot be cancelled while the IMS MPP/BMP/IFP
region is still active.

For this case and others, a batch job executing the detach utility program ADSIM012 can
be run to force the end of a user's XPEDITER IMS MPP, BMP, or IFP test. If desired, the
TSO ID can be dropped at this time.

Set up the batch job to execute the ADSIM012 program as shown below:

//XXX JOB...
//DETACH EXEC PGM=ADSIM012,
// PARM='...'
//STEPLIB DD DISP=SHR,DSN=COMPWARE.XT.SLXTLOAD

PARM is where you specify the jobs to be cancelled and is entered as follows:

1. To detach a single job name TSOUSR1, enter:

PARM='TSOUSR1'

2. To detach multiple job names TSOUSR1 and BATCHJB1, enter:

PARM='TSOUSR1,BATCHJB1'

3. To detach all XPEDITER IMS dependent region tasks, enter:

PARM='ALLXPED'

Note: If you do not know the job names, run the ADSIM012 program without a
parameter string to obtain a list of each XPEDITER job or TSO session that is
currently connected to the IMS control region. Alternatively, the operator can
enter /DIS A on an IMS terminal to get the active job names. The job name for
any XPEDITER test region running in TSO is the user's TSO ID.

7-16 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
The ADSIM012 program can also be run as a CLIST in the TSO foreground. To get status
messages at the terminal, specify WTPMSG on the TSO PROFILE command as shown in
the sample CLIST below:

PROFILE WTPMSG
CALL 'COMPWARE.XT.SLXTLOAD(ADSIM012)' 'parm'

Where parm can be a single job name, multiple job names, or ALLXPED as described
above.

Notes:

1. The ADSIM012 program will not detach XPEDITER regions running in XPBYPASS
mode because of the risk of abending the control region with a U113. Regions
running in XPBYPASS mode should be cancelled the same way that a non-XPEDITER
region is cancelled.

2. To be effective, the ADSIM012 program must run in the same system where the IMS
control region is running.

3. Because this method forces a termination of the XPEDITER test session, there may be
an abend on the TSO session (in XPEDITER) while getting out of the test. This abend
should not adversely affect any subsequent XPEDITER tests.

4. The ADSIM012 program will not detach XPEDITER regions in which the XPEDITER
TCB handling the STIMER loop is rendered inactive because you pressed the Attn key.
However, normal IMS shutdown procedures (i.e., /STOP REG, /STOP REG ABDUMP,
/STOP REG CANCEL) for these XPEDITER regions will work.

8-1

Chapter 8.

8Debugging With DB2 Stored Procedures Chap 8

XPEDITER/TSO, a testing and debugging product, supports the debugging of DB2 stored
procedures using the DB2 Stored Procedure option. Operation of the product requires the
stored procedure to reside on an OS/390 or z/OS system. The client can be either local
(OS/390 or z/OS) or remote.

DB2 Stored Procedure Requirements
XPEDITER/TSO DB2 Stored Procedure support requires:

• DB2 Version 6.1 or above.

• Workload Manager (WLM) managed stored procedures.

• Installation of XPEDITER/TSO Batch Connect if this feature is to be used for
debugging stored procedures (refer to the chapter entitled “Installation Procedures”
in the XPEDITER/TSO and XPEDITER/IMS Installation Guide).

• Installation of XPEDITER/TSO Stored Procedure support (refer to the chapter entitled
“Installing DB2 Stored Procedure Support” in the XPEDITER/TSO and XPEDITER/IMS
Installation Guide).

Overview of DB2 Stored Procedure Support
To debug a stored procedure, you must first inform XPEDITER/TSO which stored
procedure you want to debug. The stored procedure will be submitted with a predefined
Application Environment for XPEDITER/TSO’s use.

Next, the client application (the program that calls the stored procedure) must be started.
The client can be local to OS/390 (such as batch, IMS, or CICS) or remote (such as
Windows, Windows NT, OS/2, Unix, Powerbuilder, or Visual Basic).

After the client application begins executing and invokes the stored procedure,
XPEDITER/TSO intercepts the request from DB2 to WLM to schedule the stored
procedure to be executed. XPEDITER/TSO will then direct WLM to use the previously
submitted stored procedure with the XPEDITER/TSO application environment.

XPEDITER/TSO Stored Procedure support can use either forground debugging or
XPEDITER’s Batch Connect feature. After the client application has made the call to the
stored procedure, the user can debug the stored procedure in their TSO address space or
initiate a Batch Connect debugging session by attaching to the stored procedure. The
source for the stored procedure will be displayed and execution will be paused at the
entry to the stored procedure.

From this point, all available XPEDITER/TSO commands may be used for debugging the
stored procedure. You can step through the entire stored procedure until it returns
control through WLM, sending back requested values and return codes to the invoking
(client) program. At this point, either the debugging session will terminate or a second
invocation of the stored procedure can begin. When setting up the debugging session,
you were required to enter how many times the stored procedure will be intercepted by
XPEDITER/TSO (this is specified in the Maximum Number of Tests field). If you entered
1, the debugging session ends after the first invocation of the stored procedure has

8-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
completed. If you entered a number greater than 1, XPEDITER/TSO will wait for the next
call to the stored procedure to restart the debugging session.

After the debugging session is finished, you will be positioned in the XPEDITER/TSO log
and a TEST COMPLETED message will be displayed. At this point, you would normally
enter the GO command, instructing XPEDITER/TSO to clean up the environment and
terminate the stored procedure address space.

As an alternative, you can at any time issue the EXIT command, which instructs
XPEDITER/TSO to end the test immediately. Be aware that because this action
prematurely ends the test (the application epilog code is not executed), this is treated as
an abend. If the EXIT command is issued at any point other than after the XPEDITER
TEST COMPLETED message has been received, any DB2 table updates may be rolled back
during this period, and the stored procedure will not return requested values and return
codes to the invoking (client) program.

Note: XPEDITER/Code Coverage also supports stored procedure programs.

Starting an XPEDITER/TSO DB2 Stored Procedure
Debugging Session Using Batch Connect

XPEDITER/TSO consists of specific menus and screens accessed through ISPF. During your
debugging session, XPEDITER/TSO screens are viewed on a TSO terminal.

Before starting the session, prepare your programs (precompile, compile and link edit)
with the Compuware Shared Services (CSS) language processor. You can use the
XPEDITER/TSO online facilities to prepare your programs. Refer to “Preparing Your
Programs” on page 4-3 for additional information. For more information about
Compuware Shared Services, refer to the Enterprise Common Components Installation and
Customization Guide.

Once you have a valid load module and DDIO dataset for the stored procedure, log on to
TSO and invoke XPEDITER/TSO. Use the procedures that are in effect at your site. These
procedures will include the following steps:

1. From the XPEDITER/TSO Primary Menu (Figure 8-1), select option 4 (Stored
Procedures) and press Enter.

Figure 8-1. XPEDITER/TSO Primary Menu

 ---------------------- XPEDITER/TSO 7.4 - PRIMARY MENU ----------------------
 OPTION ===>

 0 DEFAULTS - Specify defaults
 1 PREPARE - Prepare programs for debugging
 2 TSO - Debug programs interactively under TSO
 3 BATCH - Debug programs interactively under batch
 4 STORED PROC - Debug DB2 Stored Procedures interactively
 5 UTILITIES - Perform utility functions
 F FADB2 - Invoke File-AID for DB2
 FA FILE-AID - Invoke File-AID for MVS
 FI FILE-AID/IMS - Invoke File-AID for IMS
 C CODE COVERAGE - Code Coverage Reports and Utilities
 CS CICS - Connect to a CICS region
 T TUTORIAL - Display information about XPEDITER/TSO
 X EXIT - Exit primary menu

 Profile ===> DEFAULT - *** NO DESCRIPTION ***

 For Online Technical Support Reference: http://frontline.compuware.com
 COPYRIGHT (C) 2005, Compuware Corporation. All rights reserved.
 (800) 538-7822

 Press ENTER to process or enter END command to terminate

Debugging With DB2 Stored Procedures 8-3
Note: The XPEDITER/TSO Process DB2 Stored Procedures screen (Figure 8-2 on page
8-4) is displayed.

2. On the Process DB2 Stored Procedures screen (Figure 8-2 on page 8-4), type SETUP on
the command line and press Enter to display the XPEDITER/TSO Setup Menu screen
(Figure 8-3 on page 8-6).

3. Specify an A (All) in the OPTION field of the Setup Menu screen and press Enter to
display the Base Product Datasets screen. Continue to press Enter to access additional
screens and review all of your setup selections. The following choices are available:

– Load libraries—user program libraries allocated as STEPLIB. Verify that the order
of concatenation is correct. Help libraries are also listed on this screen.

– DDIO Dataset Files—the library name should be the dataset name of the DD
CWPDDIO in your XPEDITER compile step. The field designations are User
Libraries and Installation Libraries.

– Test script libraries.

– Test session LOG dataset.

– Test session script dataset.

– DB2 system names and DSNLOAD datasets.

– Code Coverage Repository dataset name, System name, and Test IDs (if installed
at your site).

– Test session document dataset—used for diagnostic purposes under the direction
of XPEDITER Technical Support. Disposition after test as D.

– Extended setup options.

Note: As you view the individual screens, you may encounter the message:

Changes made to this list override installed defaults

4. If everything is correct, press PF3 from the Setup Menu to return to the Process DB2
Stored Procedures screen (refer to Figure 8-2 on page 8-4).

5. Fill in the schema name, the stored procedure name or UDF, DB2 subsystem name,
and maximum number of tests for the stored procedure that you wish to debug. The
stored procedure name can be a stored procedure, trigger or UDF. In the case of a
UDF, the procedure name should be used in the Stored Procedure Name or UDF field.
In the case of triggers, the trigger must use a triggered SQL that invokes a stored
procedure. So, on the CREATE TRIGGER you should include the SQL that calls the
stored procedure.

6. Fill in the client end userID, PC account code, or IP address of the computer. You may
also enter an asterisk (*) to match on anything.

7. Set the User Supplied WLM JCL field to N (No) to make XPEDITER retrieve the JCL
defined for the stored procedure. Set User Supplied WLM JCL to Y (Yes) if you wish
to specify your own JCL to execute the stored procedure. When specifying Y, an
additional Select Job Step screen will be displayed where you must enter the dataset
that contains the JCL (this JCL must execute the WLM server).

8. Convert and Submit the JCL: The Select Job Step screen (Figure 8-5 on page 8-8) is
used to specify how you want each job step to execute (in interactive or unattended
mode), and if you want Code Coverage to be active or not. When a job step is
selected for interactive debugging, the source for that step is displayed at your
terminal.

When a step is selected to run in unattended mode, you cannot interact with the step
from your terminal. If you want to debug the step, XPEDITER debugging commands
must be read from a test script and the output results from the test session are written
to the log.

8-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
You can submit the job from this screen or you can edit the JCL. When you submit
the job, the Batch Connect intelligent scanner automatically converts each step to
execute in the specified mode (interactive or unattended).

9. Connect to the Job: If you submit the job with the RUN command, you are
automatically connected to the job steps that were specified to execute in interactive
mode. If you submit the job with the SUBMIT command, you must use either the
CONNECT or STATUS command to connect your terminal to the job steps selected
for interactive debugging.

10. Edit the JCL: Optionally, you can access the Edit Facility from the Process Execute
JCL or Select Job Step screen to view and confirm the JCL conversion, or to make
changes to the JCL.

11. Once the debugging session is submitted, XPEDITER/TSO waits for the stored
procedure to be called by the client application. After the stored procedure has been
called, you can connect to it with XPEDITER/TSO.

12. View the XPEDITER/TSO source display on the TSO terminal.

13. Debug the stored procedure using any of the XPEDITER/TSO debugging commands.

14. At the end of the test type GO or EXIT and press Enter. EXIT is a premature end to
the test and will cause an abend. DB2 updates may be rolled back during this period.

15. If you enter a number greater than 1 in the Maximum Number of Tests field,
XPEDITER/TSO will wait until the next time the stored procedure is called, and then
return you again to the source.

Debugging a DB2 Stored Procedure
From the XPEDITER/TSO primary menu, select OPTION 4 (STORED PROC) to debug a
DB2 stored procedure. Press Enter and the XPEDITER/TSO Process DB2 Stored Procedures
screen shown in Figure 8-2 is displayed.

Figure 8-2. XPEDITER/TSO Process DB2 Stored Procedures Screen

After the required information is entered, the JCL needed to execute the stored procedure
must be submitted.

PROFILE: DB2SP ----------------- XPEDITER/TSO - Process DB2 Stored Procedures -
COMMAND ===>

Primary Commands: SEtup (display setup menu)

 Schema Name ===> XT

 Stored Procedure Name
 or UDF ===> TRISPTG

 Client End UserID or PC Account Code
 or IP Address ===> MFHABC0
 DB2 Subsystem Name ===> D610 (D610,D701,D510)
Maximum Number of Tests ===> 3 (1 - 9999)

 User Supplied WLM JCL ===> Y (Y or N)

 Jobcard Information:
 ===> //MFHABC0 JOB (#ACCOUNT),CLASS=A,MSGCLASS=X,
 ===> // MSGLEVEL=(1,1)

 Press ENTER to process or enter END command to terminate

Debugging With DB2 Stored Procedures 8-5
The SEtup command displays the Setup Menu screen (Figure 8-3 on page 8-6) from which
you can select screens for specifying load libraries, DDIO datasets, and so on.

The fields on the Process DB2 Stored Procedures test screen are:

Schema Name

Used to supply the schema name associated with the stored procedure. XPEDITER
will use this name, along with the stored procedure name, to resolve the Workload
Manager (WLM) application environment and the load module name. Your site’s DB2
administrator or WLM System Support specialist should be able to provide the
schema and stored procedure names that have been defined to WLM and DB2.
Beginning with DB2 8.1, the schema name can be up to 128 bytes long.

Stored Procedure Name or UDF

Used to identify the OS/390 DB2 stored procedure to be debugged using
XPEDITER/TSO. Beginning with DB2 8.1, the stored procedure name can be up to
128 bytes long.

Client End UserID or PC Account Code or IP Address

Enter whichever of the following is appropriate for your test:

– The ID of the user executing the client program that calls the stored procedure. If
the client is a batch job, specify the user ID assigned to the job. XPEDITER will
not trap the stored procedure if the client calling it is associated with a different
user ID.

– The TCP/IP address where a network call of the stored procedure is done. An
example would be a DB2 UDB on the PC.

– The DB2 accounting code of the PC used to execute the client program. If DB2
UDB is installed and appropriately configured on the PC, the accounting code
can be set at the DOS prompt by entering DB2SET ACCOUNT=xxxxxx where
xxxxxx is the desired code. The code is then passed to the mainframe and used to
set the trap for the stored procedure.

– An asterisk (*). This will match on anything.

This field is required.

DB2 Subsystem Name

The name of the DB2 Subsystem which this stored procedure is running under. This
field is required.

Maximum Number of Tests

This field indicates how many times the stored procedure will be intercepted by
XPEDITER/TSO. If a stored procedure is called multiple times and this field is set to 1,
only the first iteration will be trapped by XPEDITER/TSO. Subsequent calls will run
outside of XPEDITER/TSO.

User Supplied WLM JCL

Enter either Y (Yes) or N (No). N indicates that XPEDITER/TSO will retrieve the Work
Load Manager (WLM) JCL from DB2 to run the stored procedure. Y indicates that you
will provide the WLM JCL to run the stored procedure. A subsequent panel will be
displayed to enter the dataset name of the JCL.

Jobcard Information

Enter the jobcard information to be used for the stored procedure test that is
executed. If N was entered in the User Supplied WLM JCL field, the JOBCARD will
be used for the retrieved stored procedure JCL when the test is submitted.

8-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Accessing the XPEDITER/TSO Setup Menu Screen

If you type SEtup on the command line of the Process DB2 Stored Procedures screen and
press Enter, the XPEDITER/TSO Setup Menu screen shown in Figure 8-3 is displayed.

Figure 8-3. XPEDITER/TSO Setup Menu Screen

To access the screens containing Load Libraries, DDIO dataset, etc., type an A (All) on the
command line of the XPEDITER/TSO Setup Menu Screen and press Enter.

Each of the successive screens (Test script libraries, Test Session LOG dataset, DSNLOAD
datasets, etc.) are accessible (in consecutive order) by continuing to press Enter.

Specifying the JCL
If you enter a Y in the User Supplied WLM JCL field of the XPEDITER/TSO Process DB2
Stored Procedures screen, Figure 8-4 on page 8-7 will be displayed. From the Process
Execute JCL screen (Figure 8-4 on page 8-7), specify the name of the dataset that contains
the Work Load Manager (WLM) JCL specific to your stored procedure. Type this name in
the Dataset Name field and press Enter. This JCL must execute the WLM server.

Profile: DEFAULT --------- XPEDITER/TSO - SETUP MENU --------------------------
OPTION ===>

 0 ENVIRONMENT - Execution environments menu
 1 LOADLIBS - Load module libraries
 2 DDIO - DDIO files
 3 INCLUDES - Test script libraries
 4 LOG - Session log dataset disposition
 5 SCRIPT - Test script dataset disposition
 6 DSNLOAD - DB2 system names and DSNLOAD libraries
 7 PANEXEC - PANEXEC load libraries

 C CODE COVERAGE- Code Coverage setup options
 D DOCUMENT - Document dataset disposition
 E EXTENDED - Extended Setup Menu
 A ALL - Display all of the above in succession (except 0)

 Press ENTER to process or enter END command to terminate

Debugging With DB2 Stored Procedures 8-7
Figure 8-4. Process Execute JCL Screen

There are two steps you must perform on the Process Execute JCL screen:

1. Enter the name of the dataset containing your execution JCL, either in the ISPF
Library field or in the Other Partitioned or Sequential Dataset field.

2. Use one of the following primary commands on the command line:

When JCL processing is completed, the job steps in the specified JCL are displayed on the
Select Job Step screen shown in Figure 8-5 on page 8-8.

blank Leave the command line blank to scan the specified JCL and extract the
job step information. If the JCL is a procedure, it is expanded prior to
scanning. A progress message is displayed during processing. When
processing is complete, the Select Job Step screen shown in Figure 8-5 on
page 8-8 is displayed.

Browse Invokes the ISPF browse facility and displays the specified JCL.

Edit Invokes the ISPF edit facility and displays the specified JCL. You can edit
the JCL. Refer to “Editing the JCL” on page 4-26 for more information.

SEtup Accesses the Test Setup Menu that will let you access the job card
information needed to process JCL PROCs. Refer to Appendix C,
“Specifying Setup Options” for more information.

STatus Displays the status of any submitted job(s). You can connect to a job from
the Status screen.

-------------------- XPEDITER/TSO - PROCESS EXECUTE JCL -----------------------
COMMAND ===>

Primary Commands: blank (Process JCL) Browse Edit SEtup STatus

ISPF Library:
 Project ===> PFHABC0
 Group ===> BATCON ===> ===> ===>
 Type ===> JCL
 Member ===> (Blank for member selection list)

Other Partitioned or Sequential Dataset:
 Dataset Name ===> ‘COMPWARE.XT.SLXTSAMP(TRIJCLST)’
 Volume Serial ===> (If not cataloged)

 Press ENTER to process or enter END command to terminate

8-8 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 8-5. XPEDITER/TSO Select Job Step Screen

The Select Job Step screen is used in two ways:

1. Use the I, IC, U, or UC line command to specify how you want each job step to
execute: in interactive or unattended mode. The JCL will be converted to run with
XPEDITER/TSO in the specified execution mode. Refer to “JCL Conversion” on page
4-28 for information about JCL conversion.

2. Use the RUN or SUBMIT primary command to convert and submit the JCL, the EDIT
command to view or edit the JCL, the SETUP command to access and change your
job card information, the STATUS command to display the status of submitted jobs,
or the END command to exit.

The Line commands are defined as follows:

I (Interactive) testing

Selects the step to run in interactive mode.

U (Unattended) testing

Selects the step to run in unattended mode.

IC (Interactive Code Coverage)

Selects the step to run in interactive mode (with Code Coverage active).

UC (Unattended Code Coverage)

Selects the step to run in unattended mode (with Code Coverage active).

blank (Reset I/U/C)

Blank the line command area and press Enter to remove an I, IC, U, or UC line
command set on a job step.

The Primary commands are defined as follows:

Edit

Accesses the ISPF edit facility. The JCL is automatically converted and displayed on
the ISPF edit screen. You can view and confirm the JCL conversion and make
additional modifications to the converted JCL. However, the changes made to the
converted JCL will not be saved when you select CANCEL or PF3 (END) from the edit
screen. Refer to “Editing the JCL” on page 4-26 for more information and for an
example of the ISPF edit screen (Figure 4-16 on page 4-27).

Note: You can submit the JCL from the edit screen using the RUN or SUBMIT
command.

 ----------------------- XPEDITER/TSO - SELECT JOB STEP ----- Row 1 to 1 of 1
 COMMAND ===> SCROLL ===> PAGE

 Line Commands: Primary Commands:
 I - Interactive testing Edit - Display converted selected steps
 U - Unattended testing END - Exit without processing
 IC - Interactive Code Coverage RUN - Submit and connect
 UC - Unattended Code Coverage SEtup - Setup work datasets
 SUBmit - Convert selected steps and submit
 blank - Reset I/U/C STatus - Display status of submitted job(s)

 Dataset: 'COMPWARE.XT.SLXTSAMP(TRIJCLST)'

 PROGRAM INITSCR POSTSCR STEPNAME PROCNAME PROCSTEP EXEC PGM
 ----------------------------------- ---
 __ DSNX9WLM ________ ________ CREATE
 ******************************* Bottom of data ********************************

Debugging With DB2 Stored Procedures 8-9
END

Exits without converting the JCL, saving any modifications, or submitting the job,
and returns you to the Process Execute JCL screen.

RUN

Converts the steps selected by the I and U line commands to predefined
XPEDITER/TSO steps and submits the JCL. When the job processes successfully, you
are automatically connected to the job steps selected to run in interactive mode and
the Source screen is displayed.

If the job is a long-running job, the Connect Status screen is displayed showing the
job status.

Note: The terminal cannot be used while the job is running.

If the JCL is already converted, the RUN command (with a DSNAME) can be entered
on any screen except an XPEDITER test session screen. Refer to the XPEDITER/TSO and
XPEDITER/IMS Reference Manual for more information about the RUN command.

SEtup

Displays the Setup Menu from which you can select to view and change the job card
and library information, such as the DDIO file (XPSL000n) and the SCRIPT file
(XINCLUDE). Refer to Appendix C, “Specifying Setup Options” for more
information.

SUBmit

Converts the steps selected by the I, IC, U, and UC commands to XPEDITER/TSO
steps and submits the job. A job submitted with the SUBMIT command is not
automatically connected. To connect to a job submitted with the SUBMIT command,
you must use the CONNECT or STATUS command. Refer to “Connecting to a Job” on
page 4-25 for more information regarding the CONNECT or STATUS command.

Note: While the job is running, you can continue using your terminal.

STatus

Displays the status of a job. You can connect to the job directly from the Status
screen.

The fields displayed on the Select Job Step screen are defined as follows:

Dataset

This field is pre-filled with the dataset name of the JCL being processed.

PROGRAM

The name of the program to be tested. The PROGRAM name does not necessarily
match the EXEC PGM name.

INITSCR

The member name of the script in the INCLUDE library specified on the Setup panel.
The INITSCR field can be typed over to specify a test script member, which can then
be processed at the beginning of a debugging session.

POSTSCR

The member name of the script in the INCLUDE library specified on the Setup panel.
The POSTSCR field can be typed over to specify a test script member which can be
processed at the end of a debugging session.

STEPNAME

The job step name.

8-10 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
PROCNAME

The in-stream or cataloged procedure name.

PROCSTEP

The step name within the called procedure.

EXEC PGM

The name of the EXEC program that is executed for the step. XPTSO if I (Interactive)
or IC (Interactive Code Coverage) was specified for the step. XPBATCH if U
(Unattended) or UC (Unattended Code Coverage) was selected for the step. The field
is left blank if the name is the same as the one entered in the PROGRAM field.

Connecting to a Job

When you use the RUN command to submit the job, the steps that are selected for
interactive debugging are automatically displayed at your terminal.

When you use the SUBMIT command to submit the job, there are two ways to connect to
a job—the CONNECT command and the STATUS command:

1. CONNECT Command: You can use the CONNECT command on any screen (except
the source display) to connect a VTAM terminal to a job submitted through
XPEDITER/TSO’s Batch Connect facility. You can connect to a job with multiple steps
or to a single step job. For information on the CONNECT command syntax, refer to
the XPEDITER/TSO and XPEDITER/IMS Reference Manual.

2. STATUS command: The STATUS command is used to display the Status screen
containing a list of the active/inactive jobs in the system. The STATUS command can
be entered from any screen.

The ATTACH line command on the Status screen is used to connect to a job and display
the source of each job step for which the I (Interactive) command was specified. A
message is displayed notifying you that the job step selected for testing is executing.

Editing the JCL
There are two points at which the Batch Connect facility lets you edit your JCL.

1. Primary editing is available by entering the EDIT primary command on the Process
Execute JCL screen (Figure 8-4 on page 8-7). An ISPF edit session is invoked and the
specified JCL is displayed. If your site security permits, changes will be saved to the
original JCL when the edit session ends.

2. Secondary editing is available by entering the EDIT primary command on the Select
Job Step screen (refer to Figure 8-6 on page 8-11). An ISPF edit session is invoked and
a temporary copy (45 lines) of JCL as shown in Figure 8-7 on page 8-11 is displayed.
JCL statements for those steps selected for testing, using the I (Interactive) or U
(Unattended) line commands, are already converted when the edit screen is
displayed.

After any editing is completed, you can submit the job from the XPEDITER/TSO
Select Job Step screen (Figure 8-6 on page 8-11) with the RUN or SUBmit command.

Debugging With DB2 Stored Procedures 8-11
Figure 8-6. XPEDITER/TSO Select Job Step Screen

Figure 8-7. Sample Edit JCL Screen

Debugging a Client Application and a DB2 Stored
Procedure Together

A specialized technique has been developed that allows for the debugging of a client
application which calls a DB2 stored procedure, while using a single TSO userid. Detailed
instructions are provided in Appendix I, “Debugging a Client Application and DB2 Stored
Procedure”.

Note: This technique will only work if the client application is submitted as a batch
program set up to run with XPEDITER/TSO Batch Connect.

DB2 Stored Procedure Security Considerations
Be advised that there are a few security considerations concerning XPEDITER/TSO Stored
Procedure support.

 PROFILE: DB2SP--------- XPEDITER/TSO - SELECT JOB STEP ----- Row 1 to 1 of 1
 COMMAND ===> Edit SCROLL ===> PAGE

 Line Commands: Primary Commands:
 I - Interactive testing Edit - Display converted selected steps
 U - Unattended testing END - Exit without processing
 IC - Interactive Code Coverage RUN - Submit and connect
 UC - Unattended Code Coverage SEtup - Setup work datasets
 SUBmit - Convert selected steps and submit
 blank - Reset I/U/C STatus - Display status of submitted job(s)

 Dataset: 'COMPWARE.XT.SLXTSAMP(TRIJCLST)'

 PROGRAM INITSCR POSTSCR STEPNAME PROCNAME PROCSTEP EXEC PGM
 ----------------------------------- ---
 __ DSNX9WLM ________ ________ SERVER IEFPROC XPTSO
 ******************************* Bottom of data ********************************

EDIT ---- SYS00306.T150619.RA000.PFHABC0.R0105038 ------------ Columns 001 072
COMMAND ===> SCROLL ===> PAGE
****** ***************************** Top of Data ******************************
000001 //PFHABC0S JOB ('OXTBAS7.0DEV'),'JOHN JONES',
000002 // CLASS=A,NOTIFY=PFHABC0,MSGCLASS=X,REGION=6144K
000003 /*JOBPARM S=*
000004 //SERVER PROC DB2SSN=D610,
000005 // NUMTCB=1, MUST BE 1 FOR XPEDITER/TSO
000006 // APPLENV=XPEDAENV,
000007 // DB2Q=DSN610, DB2 HIGH LEVEL QUALIFLIER
000008 // LELIB='CEE.SCEERUN', LE LIBRARY
000009 // USERLIB='XTTEST.X74.IVP.LOADLIB' WHERE TRISPM RESIDES
000010 //*
000011 //***
000012 //* JCL FOR RUNNING THE WLM-ESTABLISHED STORED PROCEDURES
000013 //* ADDRESS SPACE
000014 //*
000015 //* DB2SSN -- THE DB2 SUBSYSTEM NAME.
000016 //* END USER REQUESTS. MUST BE 1 FOR XPEDITER/TSO.
000017 //* APPLENV -- THE MVS WLM APPLICATION ENVIRONMENT
000018 //* SUPPORTED BY THIS JCL PROCEDURE. THIS BE THE
000019 //* WLM NAME USED DURING THE STORED PROCEDURE
000020 //* DEFINITION TO DB2.
NO STEP WAS SELECTED. JCL IS UNCHANGED.

8-12 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Batch Connect Security Check

Connection can be made to any job, including production jobs, if you permit testing in
production DB2 subsystems, as long as your site security grants the authority. The Batch
Connect facility is shipped with a default security exit routine that allows connection to
a job if the JOBNAME, without the last character, matches the TSO ID of the user
attempting to connect to it. When a connection cannot be made, the messages CANNOT
CONNECT or SECURITY CHECK FAILED are issued.

The site installer can customize the security exit routine to tailor the security level for
certain groups or individuals. When an asterisk (*) is entered in the Jobname field on the
Status screen, all jobs that are waiting for connection or being tested under Batch
Connect are listed. System programmers are able to connect to a remote job and use the
facility as a help desk feature in debugging application programs.

DB2 Subsystems to Debug

Before XPEDITER/TSO can be used to debug stored procedures, an XPEDITER/TSO stored
procedure activation program must be run on the OS/390 system (after every IPL). The
DB2 subsystems XPEDITER/TSO will be allowed to intercept are specified to the
activation program. Refer to the XPEDITER/TSO and XPEDITER/IMS Installation Guide for
details on the execution of the DB2 stored procedure activation program.

Optional Security Access Facility (SAF) Calls

Optionally, XPEDITER/TSO will issue SAF (Security Access Facility) calls to your external
security package (RACF, ACF2, Top Secret, etc.). This allows your installation to limit the
number of individual users who are able to debug DB2 stored procedures being called
from whichever client selected. Refer to the XPEDITER/TSO and XPEDITER/IMS Installation
Guide for details on how to add additional DB2 stored procedure security.

Security Exit

If you have specific security issues not addressed by the aforementioned security
procedures, you can optionally code an XPEDITER/TSO and XPEDITER/IMS security exit.
Refer to the XPEDITER/TSO and XPEDITER/IMS Installation Guide for details on how to add
additional DB2 stored procedure security via the ADSRAUSR exit.

Foreground Debugging of DB2 Stored Procedures
In addition to debugging stored procedures in Batch Connect mode as described above,
XPEDITER enables DB2 stored procedures to be debugged within the TSO address space.
This foreground debugging capability eliminates the requirement to install
XPEDITER/TSO Batch Connect.

The following example illustrates how to perform foreground debugging of a stored
procedure. For the purposes of this example, assume that an existing test profile is being
used and debugging of DB2 stored procedures has been selected on the Environments
Menu. Only the stored procedure can be debugged during this session. The driver or
client that calls the stored procedure must be debugged in a separate foreground or batch
debugging session.

1. From the XPEDITER/TSO Primary Menu (Figure 8-1 on page 8-2), select option 2
(TSO) and press Enter. The DB2 Stored Procedure screen (2.12) shown in Figure 8-8
on page 8-13 will be displayed.

Debugging With DB2 Stored Procedures 8-13
Figure 8-8. DB2 Stored Procedure Screen (2.12)

2. Fill in all required fields on the DB2 Stored Procedure screen, then press Enter to start
the test. The Test screen shown in Figure 8-9 will be displayed while waiting for the
stored procedure to be intercepted.

Figure 8-9. Test Screen During Stored Procedure Testing

Note: At this point, you may choose to exit the test. See “Exiting an In-Progress Stored
Procedure Test” on page 8-14 for details.

3. Initiate the client that invokes the stored procedure specified in step 2.

4. After intercepting the stored procedure, XPEDITER will display the source as shown
in Figure 8-10 on page 8-14.

PROFILE: DB2SP XPEDITER/TSO - DB2 Stored Procedure (2.12) ----------------
COMMAND ===>

COMMANDS: SEtup (Display Setup Menu)
 PROFile (Display Profile List)

 Schema Name ===> XT

 Stored Procedure Name
 or UDF ===> TRISPTG

 Client End UserID
 or PC Account Code
 or IP Address ===> MFHABC0
 DB2 Subsystem Name ===> D610 (D610,D701,D510)
Maximum Number of Tests ===> 1 (1 - 9999)

 Initial Script ===>
 Post Script ===>

 File List/JCL Member ===>
 Preview Files? ===> NO
 Code Coverage Test? ===> NO
 Press ENTER to process or enter END command to terminate

Profile: STORE --------------------- TEST ----------------------Files Allocated
COMMAND ===>

 **
 * *
 * Entering XPEDITER/TSO Test Environment *
 * *
 **
 * TYPE OF TEST: STORED PROCEDURES *
 * PROFILE: STORE *
 * STORED PROCEDURE: XT.TRISTPG *
 * DB2 SUBSYSTEM: D610 *
 * USERID: MFHABC0 *
 **

8-14 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure 8-10. Source Display for Stored Procedure Test

Note: If you need to prematurely end the test, type EXIT on the command line and
press Enter. This will cause a user abend so DB2 can clean up its resources.

5. Enter the GO command (at the GOBACK) for normal test completion. When the test
has completed, the XPEDITER log will be displayed. At that point you must enter the
GO command again to complete the DB2 stored procedure test.

Exiting an In-Progress Stored Procedure Test

While waiting for a stored procedure to be intercepted, you can press Attention to
suspend the test. The message shown in Figure 8-11 will be displayed, giving you the
option of continuing or exiting the test. This gives you a way of escaping the test, if
necessary, while the wait for a stored procedure intercept is in progress.

Figure 8-11. Stored Procedure Intercept In Progress Message

Responding to the message with EXIT forces XPEDITER to clean up the current
environment and terminate the test. A few error messages similar to those shown in
Figure 8-12 on page 8-14 will be displayed as a result.

Figure 8-12. Error Messages from Stored Procedure Test Exit

----------------------------- XPEDITER/TSO - SOURCE ----------------------------
COMMAND ===> SCROLL===> CSR

 BEFORE BREAKPOINT ENCOUNTERED

000010 01 TST-REC > 345
000014 01 TYPE-OF-TRIANGLE > ?? INVALID DECIMAL
 ** END **

------ -- Before TRISPTG:15 <>
====>> B PROCEDURE DIVISION USING TST-REC
000016 TYPE-OF-TRIANGLE.
000017 VALIDATE-TRIANGLE.
000018 ADD A B GIVING A-N-B
000019 ADD A C GIVING A-N-C
000020 ADD B C GIVING B-N-C
000021 IF (B-N-C NOT > A) OR (A-N-C NOT > B) OR (A-N-B NOT > C)
000022 MOVE 4 TO TYPE-OF-TRIANGLE.
000023 DETERMINE-TYPE.
000024 IF TYPE-OF-TRIANGLE = 4
000025 NEXT SENTENCE
000026 ELSE
000027 IF (A = B) AND (B = C)
000028 MOVE 1 TO TYPE-OF-TRIANGLE

 DB2 STORED PROCEDURE INTERCEPT IN PROGRESS
 INTERCEPT DATA: SUBSYS=D610 USERID=TSOUSER1 STORED PROCEDURE=TRISPTG
 ENTER EXIT TO TERMINATE OR ENTER TO CONTINUE

 DB2 STORED PROCEDURE INTERCEPT IN PROGRESS
 INTERCEPT DATA: SUBSYS=D610 USERID=TSOUSER1 STORED PROCEDURE=TRISPTG
 ENTER EXIT TO TERMINATE OR ENTER TO CONTINUE
EXIT
 BPXP009I THREAD 14E5740000000001, IN PROCESS 83886228, ENDED
 ABNORMALLY WITH COMPLETION CODE 0423E000, REASON CODE 00000000.
 Abend 23E000 hex occurred processing command 'XPCP '.

9-1

Chapter 9.

9Debugging Programs With Special Conditions Chap 9

Checkpoint/Step Restart
XPEDITER/TSO supports Checkpoint/Step Restart using the RESTART JCL card under
certain circumstances. Consider the following scenarios.

Scenario One

There is an ABEND in a multiple step job stream and the ABEND occurred in a step other
than the step currently being tested. Under this scenario, both Step and Checkpoint
Restarts are supported.

To use Step or Checkpoint Restarts, the LOG, SCRIPT, and DOCUMENT datasets need to
be retained. Because it is not possible to know beforehand that a program will ABEND, it
is your responsibility to specify retention for these datasets if you want the ability to do a
Step or Checkpoint Restart. Refer to “Log, Script, and Document Dataset Screens” on
page C-9 for how to do this.

Scenario Two

An ABEND has occurred in a job stream without XPEDITER/TSO and the user wants to
use XPEDITER/TSO to resolve the problem. Under this scenario, Step Restart is supported
if the CONVERT JCL expansion option is used. Checkpoint Restart is not supported.

Note: The CONVERT JCL processing routines ensure the uniqueness of STEPNAMEs and
convert PROCNAME.STEPNAME to the newly generated STEPNAME.

To use Step Restart, the RESTART JCL card must specify a STEPNAME. The XPEDITER
allocation step is then inserted into the JCL just before the step specified on the RESTART
JCL card, and the RESTART JCL card is modified to point to that XPEDITER allocation
STEPNAME. If the RESTART JCL card does not specify a STEPNAME, no special processing
is performed (the JCL is converted as usual).

If you want to be able to use Step Restart after testing with XPEDITER/TSO, retain the
LOG, SCRIPT and DOCUMENT datasets as described in “Scenario One” on page 9-1.

31-bit Support
XPEDITER/TSO runs as an ISPF dialog in the TSO region under the MVS operating system.
XPEDITER/TSO modules reside above the 16 MB line, except for the I/O modules. You
can execute any programs that are AMODE(31) or RMODE(ANY) with XPEDITER/TSO.

Code Generator Support
Source code that has been generated with a code generator such as INTERSOLV APS, IBM
Cross System Product Application Development (CSP/AD), and CA-Telon, can be com-
piled with the language processor and debugged with XPEDITER/TSO at the generated
COBOL level. Code generators that produce object modules are executed with

9-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
XPEDITER/TSO; however, you might not be able to do any symbolic debugging, such as
setting breakpoints and displaying variable contents.

Optimized Code Support
COBOL programs that are optimized using CA-Optimizer or the OPTIMIZE compiler
option can be debugged symbolically under XPEDITER/TSO without altering the load
module. However, depending on the optimizing algorithm applied to the code, execution
trace and stepping through code in XPEDITER/TSO can appear to be incorrect. The logic
optimization can also impact the data flow in the program. Data values displayed with
the KEEP and PEEK commands cannot be updated correctly, and the GOTO command is
not allowed for a procedure name or statement number that was streamlined by the
optimizer.

The side effects of optimization can be verified by comparing the test results against code
that has not been optimized, or by analyzing the PMAP and LIST information generated
at compile time. When processing the source listing member with the VS COBOL II
compiler, the LIST option is required with the OPT option, although the OFFSET option
is accepted with the NOOPT option. The CA-Optimizer II is not supported by
XPEDITER/TSO. However, the CA-Optimizer III Releases 5.1 and 6.0 are supported by
XPEDITER/TSO.

VS COBOL II Releases 3.0 and Above (COBOL 85)
Support

COBOL programs compiled with VS COBOL II Release 3.1 (3.0) can be processed by the
language processor without the CMPR2 option, and can be debugged with
XPEDITER/TSO. The ANSI 85 features, such as mixed lowercase and uppercase, use of
external data and files, reference modifications, in-line performs, and scope terminators,
are supported.

Also, OS/VS COBOL and VS COBOL II Release 2.0 compiled programs executed with the
VS COBOL II Release 3.1 (3.0) run-time library can be debugged under XPEDITER/TSO.
Programs using MIXRES and IGZBRIDGE options are also supported.

Mixed Language Support
You can debug mixed COBOL, PL/I, C, and/or Assembly language applications under the
same debugging session if you are licensed for the languages comprising the application.
If you are not licensed, you cannot create the necessary source listing records.

If you are licensed, XPEDITER/TSO automatically enables the appropriate language
commands and run-time environment for the qualified program. The source is displayed
if you created the source listing member for the program; the language dependencies are
transparent to the user. Otherwise, the module for the language that is not licensed is
treated as an executable module without source. You are not allowed to perform any
symbolic debugging tasks; however, you can execute through the module.

Subroutine Testing Support
You can debug COBOL subroutines in the unit testing mode or in the integration testing
mode. When debugging a COBOL subroutine stand-alone, specify the subroutine name
on the test screen. If the subroutine name differs from the load module name, also
specify the load module name.

Debugging Programs With Special Conditions 9-3
When the source is displayed, you must initialize the Linkage Section by moving in
parameters, as if the call had just been made by the driver program. You can facilitate this
process and create the source listing member only for the subroutine that you are
debugging. Specify the driver program name on the test screen even though there is no
source listing available for the driver.

When the debugging session starts, the log file is displayed, however, the execution
status indicates that the program is at the beginning of the driver. Enter a before module
breakpoint on the submodule, then resume execution. XPEDITER/TSO executes the
driver, the driver calls the submodule, and the source is displayed as soon as the
breakpoint is encountered.

The inserted ACCEPT command can be very useful when you want to initialize Linkage
Section values. For information on the ACCEPT command, refer to the XPEDITER/TSO and
XPEDITER/IMS Reference Manual.

Database Support
There are three types of databases that XPEDITER/TSO supports. The first category is
third-party software in general, the second is IMS/DB, and the last is DB2.

IDMS/DB, ADABAS, SUPRA, DATACOM/DB, System 2000

You can debug batch programs that issue calls to IDMS/DB, ADABAS, SUPRA
(TIS/TOTAL), DATACOM/DB, and System 2000 under the Standard environment (option
1 on the XPEDITER/TSO Environments Menu). The databases are treated as if the
programs are issuing I/O operations to the VSAM files. You must pre-allocate the
databases using the File Allocation Utility. There are no special parameters that you must
set in order to debug ADABAS and SUPRA programs; however, you must SET STATIC OFF
to access IDMS database programs. Refer to the XPEDITER/TSO and XPEDITER/IMS Reference
Manual for information about the SET commands.

IMS/DB

Batch programs that make database calls using CALL to CBLTDLI are debugged in the
IMS/DB environment (option 3 on the XPEDITER/TSO Environments Menu). Verify that
the IMS-related libraries, such as RESLIB, PSB, and DBD, and the parameters information
are correctly defined in the Setup Options screens as well as on the IMS test screen.

During the debugging session, you can dynamically issue DLI function calls on behalf of
your program and access the IMS databases through the use of the DLI command.

IOPCB and return codes can be kept in the Keep window to monitor the DLI calls that are
issued.

The last function code and its return code can be retrieved to monitor the DLI activities
through the use of the SHOW IMSFUNC command. Using HELP IMSCODE shows the
common IMS abend codes.

DBT HSSR

DBT HSSR is the abbreviation for the IBM IMS/VS Data Base Tool High Speed Sequential
Retrieval utility. XPEDITER can be used to test both DBT HSSR application programs and
user exits.

These programs are debugged using the IMS/DB environment option (option 3 on the
XPEDITER/TSO Environments Menu). To support HSSR, you must add one or more
PARMs on the XPEDITER/TSO IMS Parameter Lists screen. For example:

9-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
TYPE PARM LIST

HSD DFSRRC00/DLI,MODULE,PSB,...
HSB DFSRRC00/DBB,MODULE,PSB,...
HSU DFSRRC00/ULU,MODULE,DBD,...

The PARM must follow HSSR standards. To get the proper parameter values, refer to the
working batch JCL or to the IBM IMS/VS DBT HSSR User’s Guide.

Begin the PARM with the name of the control program, normally DFSRRC00, followed by
a slash (/), followed by the environment type.

The subparameters following the first and second commas (that is, MODULE and either
PSB or DBD) are dummy values that are replaced at execution time by values from the
IMS test screen.

On the IMS test screen, specify the program type that matches the HSSR PARM you want;
i.e., HSD, HSB, or HSU.

In the PROGRAM field on the IMS test screen, specify the highest level HSSR application
program. This is the program name that is normally specified as the MBR keyword in the
JCL PARM. For testing HSSR user exits, the name is either FABHFSU or FABHURG1.

XPEDITER uses the value in the PSB field internally to replace the data string between the
second and third commas. This can be either a PSB or a DBD, depending on the HSSR
function to be performed.

Since the XPEDITER/TSO IMS Setup Menu has screens only for IMS-related datasets,
allocate the HSSR datasets in your file allocation list.

When you press the Enter key from the XPEDITER/TSO IMS test screen, the presence of
the slash (/) in the specified PARM causes XPEDITER to automatically invoke the HSSR
driver program, FABHX034. Before and after module breakpoints are set automatically in
the program specified on the test screen. If no source listing member exists for this
program, the XPEDITER log is displayed. From the log, you can set additional breakpoints
and then enter the GO command.

DB2

Batch programs that make EXEC SQL calls without IMS/DB are debugged in the Standard
environment (option 1 on the XPEDITER/TSO Environments Menu). The DSNLOAD
libraries and the associated DB2 subsystem name must be identified on the Setup screen.
Enter YES in the Is this a DB2 Test? field. In this case, XPEDITER/TSO issues a DSN RUN
command to establish the DB2 environment. The plan name and the system name must
be supplied in order to successfully execute the DSN RUN.

When the source is displayed, you will notice that XPEDITER/TSO defaults to suppressing
the DB2-translated statements, except for the initialization statements. The EXEC SQL
statements can be optionally expanded to be debugged at the generated COBOL
statement level instead of at the EXEC SQL level by using the GEN command. Also, if you
are licensed for XPEDITER for DB2 Extension and File-AID for DB2, you can insert EXEC
SQL statements to prototype DB2 calls in addition to browsing and editing DB2 tables
while in XPEDITER/TSO.

ISPF dialog applications that have programs that make EXEC SQL calls are debugged in
the Dialog environment (option 2).

Batch programs that make DB2 calls as well as IMS/DB calls must be debugged in the
IMS/DB environment (option 3).

IMS/DC programs that make DB2 calls are debugged with BTS in the BTS environment
(option 4) or by using XPEDITER/IMS option 8 or 9. In an IMS/DC test session with DB2,
split screen cannot be used with any product that causes another attach to DB2. This is
an IMS restriction.

Debugging Programs With Special Conditions 9-5
Use HELP SQLCODE to show the common SQL return codes.

Shared DL/I Database (DFHDRP) Support
Programs that access DL/I databases shared between the CICS region and TSO can be
debugged through XPEDITER/TSO by executing a CLIST through TSO or by executing a
CLIST as a USEREXIT.

The XPEDITER/TSO support for DFHDRP is provided for users who have already installed
DFHDRP (Shared DL/I Database) at their sites. See the CICS/OS/VS Installation and Operations
Guide, order number SC33-0071, "Running a Batch Region for DL/I Shared Databases," for
details of this IBM feature.

There are two methods of installing XPEDITER/TSO DFHDRP support:

1. USEREXIT CLIST

Invoked from within XPEDITER/TSO and is panel driven.

2. CLIST to execute DFHDRP

Invoked through TSO. Requires modification for each program to be tested under
XPEDITER/TSO.

To install this support, refer to the XPEDITER/TSO and XPEDITER/IMS Installation Guide.

After the CLIST is executed, the program source appears. At this point, normal
XPEDITER/TSO commands are in effect.

Note: The RETEST command does not work in this environment since the program is
treated as an IMS/VS batch program by XPEDITER/TSO.

SORT EXIT Support
XPEDITER/TSO can debug sort exits for DFSORT and SYNCSORT if you follow these steps:

1. Enter XPDSORT as the program name on the test screen instead of your sort exit
program name. XPDSORT is a dummy program supplied by XPEDITER/TSO to create
a link to SORT. You must specify the name of the XPEDITER load library on the Load
Module Libraries screen. This library contains XPDSORT. The Load Module Libraries
screen can be accessed from the Test Setup Menu selected from the Standard test
environment screen.

2. Enter the following, plus any parameters required by your specific sort, in the PARM
string field of the test screen:

NOSTIMER

For DFSORT, specify:

DEBUG NOESTAE

using the DFSPARM, SYSIN, or SORTCNTL DD statement.

3. Create an initial test script member that contains the following commands:

– SET DYNAMIC eeeeeeee

where eeeeeeee is the name of your sort exit.

Notes:

1. Ensure that the specified sort exit exists in the user load library under SETUP.

9-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
2. You must also modify your sort control statement, such as MODS
Enn=(eeeeeeee,10,,C), to point to XTASKLIB.

– SET DYNAMIC xxxxxxxx

where xxxxxxxx is the name of any dynamically called load module to be
debugged.

Note: Ensure that the specified load module exists in the user load library under
SETUP.

– BEFORE xxxxxxxx:

where xxxxxxxx is the name of any module to be debugged, compiled by JCL
calling XPEDITER/TSO.

Note: Remember to place a colon (:) at the end to specify that this is a compiled
module.

– AFTER xxxxxxxx:

where xxxxxxxx is the name of any module to be debugged, compiled by JCL
calling XPEDITER/TSO.

Note: Remember to place a colon (:) at the end to specify that this is a compiled
module.

– SET EXCLUDE zzzzzzzz

where zzzzzzzz is the name of any COBOL module that does VCON
modifications.

Note: If the sort exit being tested has a load module name different than the CSECT
name, use the fully qualified BEFORE and AFTER commands. For example,
use the following format:

BEFORE load module::SORT_EXIT:

4. Verify that the file allocation list specified on the test screen contains all of your sort
work files and sort control statements, either in-stream or in a dataset allocated
under one of the following DD statements—SYSIN, DFSPARM, SORTCNTL, or
$ORTPARM (for SYNCSORT), in addition to the files your application programs are
expecting.

Note: If a debugging session must be terminated prematurely while SORT is active, do
not use the EXIT command (it can cause a S0C4 abend), but use the following
primary commands instead:

MOVE 16 TO SORT-RETURN
GO 1
GOTO <RELEASE statement number> or GOTO <RETURN statement number>
 (depending on whether the SORT is active in the INPUT procedure or
 the OUTPUT procedure)
GO 1 (Enter GO 1 until you are out of the INPUT or OUTPUT procedure,
 depending on where the SORT is active. You should be at the
 statement after the SORT.)
GOBACK

CAUTION:
Repetitive premature exits from SORT can diminish the region size.

Debugging Programs With Special Conditions 9-7
PANEXEC Support
PANEXEC programs can be debugged using XPEDITER/TSO. The installer must enter YES
in the PANEXEC Load Module Support Installed field on the Installation Options screen.
This allows the PANEXEC Load Libraries screen to appear during installation.

On the PANEXEC Load Libraries screen, the dataset name allocated to ddname PANESRL
must be entered in the PANEXEC Load Library DSNAMES field and the ddname
associated with your PANEXEC control cards must be entered in the PANEXEC Control
Card File DSNAMES field.

Language Environment Support
XPEDITER/TSO provides the following support for Language Environment (LE):

• Debugging applications with TRAP ON or TRAP OFF. Applications can be debugged
with TRAP ON as well as TRAP OFF. The SET LETRAP ON/OFF command lets you set
the TRAP option. Multiple enclaves are not supported if LETRAP is ON.

• Debugging the new handlers language construct. XPEDITER/TSO lets you control
execution and follow user handler invocation with the following restriction:

– User handler for S0C1: XPEDITER/TSO will always get control of a S0C1 abend,
preventing the user from effectively debugging handler routines that process
S0C1 abends.

Usage Note

Even if your application programs would normally find any required Language
dependent run-time subroutines (including LE), without being included in the
JOBLIB/STEPLIB of the batch JCL (usually from the LINKLIST or (E)LPA), the libraries
must still be specified as part of the test session setup. This will ensure that XPEDITER’s
Task Library will be properly configured. For Batch Connect, the preferred method is to
include the run-time libraries in the STEPLIB DD statement concatenations of the JCL
step(s) that are being intercepted.

Third-Party Package Support
Third-Party packages are often written in Assembler language using a non-standard
linkage convention. Reset the static call tracing facility by using the SET STATIC OFF
command in an initial script so that XPEDITER/TSO does not monitor the calls.

Global Handling Of Special Conditions
If special conditions can be handled by a command stream in an initial script, the
@@SITE@@ member can be used to include these commands for the entire user
community. This member will be executed prior to any initial script specified by the user.
If placed in a Site-wide Script Library (defined at installation), a special environment can
be initiated for all users, even if no initial script is specified.

Using MQSeries With XPEDITER/TSO
In order to use MQSeries with XPEDITER/TSO, you must allocate MQSeries LOADLIBs
under DFSESL.

9-8 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
There are two methods of allocating MQSeries LOADLIBs under DFSESL:

1. By indicating DB2 = Y with a subsystem name (on the test screen). The subsystem
name points to an entry on the DSN LOADLIB screen in the SEtup.

On the DSN LOADLIB screen, more than one LOADLIB can be indicated under DSN
LOAD DSNAME for any given NAME.

For example, when you are using DB2:

NAME DSNLOAD DSNAME
D220 ’Valid.DB2.Subsystem’
D220 ’MQ.SERIES.LOADLIB’

In another example, when you are NOT using DB2:

Answer DB2 = Y in every instance.

NAME DSNLOAD DSNAME
D220 ’MQ.SERIES.LOADLIB’

2. Use the File Allocation Utility (FAU). Refer to the XPEDITER/TSO and XPEDITER/IMS
Installation Guide for information about DSNLOAD libraries and datasets.

A-1

Appendix A.Appendix A.

AUsing the File Allocation Utility App A

The File Allocation Utility (FAU) is a file list editor that is used mainly to create and
maintain file allocation lists for later use. When problems occur during file allocations,
the FAU is automatically accessed and the FAU screens required to correct the problem
are displayed. The screens and procedures available with the FAU are described in this
section.

Using the FAU, you can:

• Create new file lists.

• Edit existing file lists.

• Copy existing JCL, CLIST, and file lists and automatically select the DD statements to
be copied to a new file list.

• Save and allocate a file list for immediate use, or save the file list and allocate it at
another time.

• Depending on your site specifications, access JCL from some library management
systems, such as Librarian, Panvalet, Endeavor, and so on.

• Allocate any number of files at one time, up to the limit defined by your shop.

Accessing the File Allocation Utility
Select option 1 (Prepare) on the XPEDITER/TSO Primary Menu to access the FAU. The
Program Preparation Menu shown in Figure A-1 is displayed.

Note: The FAU is automatically accessed when problems occur during file allocations
from the test screen or using the ALLOCATE command. Only the screens needed
to correct the problem are displayed.

A-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure A-1. Program Preparation Menu

Use option 4 (Edit Allocation List) to access the FAU. The Edit File List screen shown in
Figure A-2 on page A-2 is displayed.

Figure A-2. Edit File List Screen

The dataset name of the file allocation list you are creating, editing, or copying is entered
in either the top (ISPF Library) or middle (Other Partitioned.....) section of the Edit File
List screen.

Notes:

1. If you enter the name of an existing dataset that does not contain a file list, an error
message is displayed.

2. If you enter the name of a PDS in any of the fields on this screen and you do not
enter a member name, a member selection list is displayed. You can select the
member from the list.

 ------------------ XPEDITER/TSO - PROGRAM PREPARATION MENU ------------------
 OPTION ===>

 1 CONVERT COMPILE JCL - Convert compile JCL for XPEDITER
 2 COMPILE FACILITY - Compile programs for XPEDITER
 3 BIND FACILITY MENU - Bind application plans or packages
 4 EDIT ALLOCATION LIST - Edit or Create file allocation lists

 For the COMPILE FACILITY, you may enter a separate Profile ID
 below. This will allow you to save the compile parameters
 separatly for different compiles. A '?' in the profile field will
 display a list of profiles to select from. From that list the
 profiles can be maintained (ie, COPY, RENAME, DELETE, etc.).

 Compile Profile => DEFAULT > DEFAULT COMPILE PROFILE <

 Press ENTER to process or enter END command to terminate

------------------- XPEDITER/TSO - EDIT FILE LIST ------------------------------
COMMAND ===>

Specify File Allocation List Below:

ISPF Library:
 Project ===>
 Group ===>
 Type ===>
 Member ===> (Blank for member selection list)

Other Partitioned or Sequential Dataset:
 Dataset Name ===>
 Volume Serial ===> (If not cataloged)

Copy from JCL, CLIST, or Other File Allocation List
 Dataset Name ===>
 Copy Option ===> (Replace, Append, Prompt, or Cancel copy)
 Automatic Expand ===> (Yes/No)
 Step Selection ===> (Program name for automatic step selection)

 Press ENTER to Process or Enter END Command to Terminate

Using the File Allocation Utility A-3
The way you complete the screen indicates what you want to do and determines the
sequence in which the FAU screens are displayed.

Creating a New File List

Enter a new, fully qualified dataset name in either the top (ISPF Library) or middle (Other
Partitioned.....) section of the screen. You are presented with the first of the Edit File List
screens. These screens will not contain any values. You can manually enter the
information about the files to be allocated. Refer to “Using the Edit File List Screens” on
page A-4 for a description of how to use these screens.

Editing an Existing File List

Enter the dataset name of an existing file list in either the top (ISPF Library) or middle
(Other Partitioned......) section of the screen. You are presented with the first of the Edit
File List screens. The parameters associated with each file in the file list are displayed on
these screens. The commands listed at the top of the screens can be used to browse and
edit the data, copy data, allocate the file list, and so on. Refer to “Using the Edit File List
Screens” on page A-4 for a description of how to use these screens.

Copying Existing File Lists, JCL, or CLISTs

Enter a new fully qualified dataset name or a new member name for an existing dataset in
either the top (ISPF Library) or middle (Other Partitioned) section of the screen. Enter the
name of the dataset to be copied, the copy option, expand option, and step selection in
the bottom section of the screen.

The following occurs when the copy option operates successfully:

• If the dataset being copied contains a file list, the parameters associated with each
file are listed on the appropriate Edit File List screens. The commands listed at the
top of the screens can be used to browse and edit the data, copy data, allocate the file
list, and so on. Refer to “Using the Edit File List Screens” on page A-4 for a
description of how to use these screens.

• If the dataset being copied contains JCL, the JCL is displayed on the Select DDNAME
screen.

You can select the DD statements you want copied to the file list and perform other
functions, such as editing. Refer to“Converting JCL to a File List” on page A-14.

The Copy Option choices are described below:

Replace

The existing file list is replaced by the data being copied.

Append

The data being copied is appended to the end of the existing file list.

Prompt

The default. If the "copy to" dataset already exists and Prompt is entered, the Copy
Option screen shown in Figure A-3 on page A-4 is displayed. This screen verifies the
names of the existing file list and the source to be copied. Press Enter to continue or
enter one of the options listed for the Copy Option field on the screen.

Cancel copy

The copy operation is suppressed, and you will enter the FAU with the existing file
list displayed on the appropriate Edit File List screens.

A-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
END

If the END key is used, the editing session is ended and you are returned to the Edit
File List data entry screen.

The remaining fields are:

Automatic Expand

This field is used if the dataset being copied executes JCL procedures. If set to Yes, the
references to the JCL procedures will be expanded to the actual JCL that is executed.
Refer to “Things to Know About JCL Expansion” on page A-16.

Step Selection

If you enter a program name in this field, and a step in the JCL executes that
program, that step is automatically selected and the JCL is converted to the file list.

Figure A-3. Copy Option Screen

Saving a File List

After you enter, edit, or copy the necessary ddname information, you are returned to the
Edit File List screen. From this screen, use either the SAVE or END command to save the
file, or use the ALLOCATE command to allocate the files. If there are errors, the
appropriate Edit File List screen is displayed with the ddname in question scrolled to the
top of the screen. For a verification error, a message appears in the upper right corner of
your screen; if the error is the result of the allocation process, a long error message
appears centered on the third line.

Using the Edit File List Screens
The parameters associated with each file in the file list are specified on the Edit File List
screens.

If your installation does not use SMS to manage DASD datasets, the screens shown in
Figure A-4 are displayed.

------------------------- XPEDITER/TSO - COPY OPTION -------------------------
COMMAND ===>

 The Current file allocation list exists

File Allocation List:
 Copy Source:

 Copy Option ===> (Replace, Append, or Cancel copy)

 Press ENTER To Continue or enter END To Cancel Edit

Using the File Allocation Utility A-5
Figure A-4. Edit File List Screens Without SMS

If your installation uses SMS to manage DASD datasets, the screens shown in Figure A-5
are displayed.

Figure A-5. Edit File List Screens With SMS

The RIGHT and LEFT scrolling commands let you move from one screen to another. The
UP and DOWN scrolling commands are also available. Each screen is numbered, and
contains information for the following categories:

1. Edit File List 1 - DDNAME, dsname, and disposition.

2. Edit File List 2 - Space and catalog parameters or NON-SMS parameters.

Note: If your installation uses SMS to manage DASD datasets, the Edit File List 2
screen displays the data class, storage class, management class, and delete
option.

2A. Edit File List 2A - SMS parameters

3. Edit File List 3 - DCB parameters.

You can enter the parameters manually or type over the existing parameters to change
the values.

The Edit File List screens show primary and line commands at the top of each screen.
Note that the primary commands listed on each screen may vary, depending on the
manner in which the FAU is accessed.

The line commands are entered by typing over the line command area (leftmost column
of each screen). You can delete, insert, or repeat lines to make changes to the file list. The
primary and line commands are described below:

DSNAME Space and Catalog
Parameters DCB Parameters

Scrollable

1 2 (Non-SMS) 3

DSNAME SMS Parameters

Scrollable

1 2A (SMS)

A-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Primary Commands
CANcel

Exits the FAU without allocating or saving the file list. You are returned to the
previous screen.

COPY

Copies an existing file list, JCL, or CLIST. Refer to “Using the COPY Command on
Edit File List Screens” on page A-7 for more information.

ALLOCate

Allocates the file list and returns you to the Edit File List screen.

SAVE

Saves the file list and returns you to the Edit File List screen.

END

Terminates the FAU. Depending on the way you entered the FAU, the END command
also allocates and/or saves the file list.

HELP

Displays interactive HELP.

Line Commands
Dn (Delete)

Deletes a line, where n is the number of lines to delete. The ddname on the line and
all related parameters are deleted. The block form (DD) of the command can be used
to delete a block of lines.

In (Insert)

Inserts a blank line, where n is the number of lines to insert.

Rn (Repeat)

Repeats the line, where n is the number of times the line is to be repeated. The
ddname and all related values are repeated. The block form (RR) can be used to repeat
a block of lines.

S (Select detail)

Displays detail information about the DCB, dataset allocation, security, and SYSOUT
parameters for the selected ddname. The detail information is displayed on the File
PARMS screens described in “Displaying File Parameters” on page A-12.

BR (Browse dataset)

Displays the dataset referenced by the selected ddname.

ED (Edit dataset)

Displays the dataset referenced by the selected ddname for editing.

FB (File-AID BROWSE)

Displays the dataset referenced by the selected DDNAME for viewing using
Compuware’s file utility.

FE (File-AID EDIT)

Displays the dataset referenced by the selected DDNAME for editing using
Compuware’s file utility. Use the COMPILE primary command in File-AID to allow
formatted viewing of data with a record layout.

Using the File Allocation Utility A-7
Using the COPY Command on Edit File List Screens

When you use the COPY command on any of the Edit File List screens and you do not
enter a dataset name, the Copy screen shown in Figure A-6 on page A-7 is displayed for
entering the dataset name. Entering the COPY command with a dataset name skips
this screen.

In the DSNAME field, enter the name of the dataset to be copied. Enter a value for the
VOLUME field only if the dataset is not cataloged. The dataset can be either sequential or
partitioned, fixed or variable block, with a record length of 80 or greater.

Note: If the name of a PDS is entered without a member name, a member selection list
is displayed.

Figure A-6. Copy Screen—Specifying the DSNAME

The dataset is copied when you press Enter and the following occurs:

• If the dataset being copied contains a file list, the parameters associated with each
file are listed on the appropriate Edit File List screens. The commands listed at the
top of the screens can be used to browse and edit the data, copy data, allocate the file
list, and so on. Refer to “Using the Edit File List Screens” on page A-4 for a
description of how to use these screens.

• If the dataset being copied contains JCL, the JCL is displayed on the Select DDNAME
screen. You can select the DD statements you want copied to the file list and perform
other functions, such as editing. Refer to “Converting JCL to a File List” on page
A-14.

Edit File List 1 Screen - DDNAME, DSNAME, and Disposition

 The Edit File List 1 screen, shown in Figure A-7 on page A-8, is used to enter the ddname,
dataset name, and disposition of the files to be allocated. When file information is
copied from existing file lists, CLISTs, or JCL, this information is prefilled on this screen.

---------------------------- XPEDITER/TSO - COPY -------------------------------
COMMAND ===>

 Copy An Existing File Allocation List, CLIST, Or JCL

Enter/Verify the dataset to be copied:

 DSNAME ===> 'ADSABCX.JCL.CNTL(TRIPROGM)'
 VOLUME ===> (If not cataloged)

 If the dataset contains JCL, a DDNAME selection list will be displayed

 Press ENTER To Process Or END To Terminate The COPY Function

A-8 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure A-7. Edit File List 1 Screen—DDNAME, Dataset Name, and Disposition

• The following ddnames are not allowed:

JOBCAT STEPLIB
JOBLIB SYSPROC
STEPCAT

• Dataset names can be fully qualified and enclosed in quotes. If the name is not
enclosed in quotes, the user’s prefix is added at allocation time. A member of a PDS
can be allocated by including the member name in parentheses with the dataset
name. A temporary dataset that you want to allocate to more than one file can be
entered in the form &&name (1-8 characters) with or without quotes.

The following names can also be entered: DUMMY, TEMP, TERM, and SYSOUT. They
refer to a dummy dataset, temporary dataset with no name, dataset sent to the
terminal, and SYSOUT dataset, respectively.

You can refer to the name of a previously allocated dataset by specifying *.ddname.
The referenced ddname could have been allocated previously in the current file list
or before the current file list was used.

If you want to have the actual data stored in the file list, specify a dataset name of
asterisk (*). Refer to “In-Stream Data” on page A-18.

The common types of datasets are discussed in “Types of Files That Can Be Allocated”
on page A-17.

• Valid values for the DISP field are:

MOD (M) OLD (O)
NEW (N) SHR (S)

For normal datasets, the default is SHR for temporary datasets, the default is NEW;
for the other allocations (DUMMY, TERM, SYSOUT), the DISP field is forced to blank.

Edit File List 2 Screen - Space and Catalog Information

The Edit File List 2 screen shown in Figure A-8 on page A-9 is used for the space and
catalog information required to allocate files with a disposition of NEW. If the file
disposition is NEW, default values are prefilled for the UNITS, PRIMARY, SECONDARY,
RLSE, and DEL? fields.

------------------ XPEDITER/TSO - EDIT FILE LIST 1 --------------- Row 1 of 12
COMMAND ===> SCROLL ===> CSR

Line Commands: Primary Commands: ...MORE ===>
 D (Delete) S (Select detail) CANcel (Quit without saving)
 I (Insert) BR (Browse dataset) COPY (Copy JCL or File List)
 R (Repeat) ED (Edit dataset) SAVE (Save File List)
 FB (File-AID Browse) END (Allocate and continue)
 FE (File-AID Edit)
File Allocation List: 'PFHABCX.ALLOC(FLIST)'
 ----------------------- DSNAME ----------------------- DISP
--
''''' INFILE JCL.CNTL(INPUT) SHR
''''' OUTFILE TEST.RESULTS NEW
''''' REPORT01 SYSOUT=A
''''' REPORT02 SYSOUT=*
''''' MASTERIN 'ABC.DATA.MASTER(+0)' SHR
''''' MASTEROU 'ABC.DATA.MASTER(+1)' NEW
''''' SORTWK01 TEMP
''''' SORTWK02 TEMP
''''' SORTWK03 TEMP
''''' ALTERNAT DUMMY
''''' TEMP1 TEMP
''''' SYSOUT TERM

Using the File Allocation Utility A-9
When file information is copied from existing file lists, CLISTs, or JCL, this information
is prefilled on this screen.

Figure A-8. Edit File List 2 Screen—Space and Catalog Information

Values for space and catalog information are:

UNITS

Valid values are TRACK (TRK, TRKS, TRA), CYL, or a block size of 0 to 65535 bytes.

PRIMARY

Number of units to allocate. Values are 0 to 99999.

SECONDARY

Space is allocated if the primary allocation is exceeded. Values are 0 to 99999.

DIR

If a new dataset is a PDS, this field reserves space for the member names. Values are 0
to 999.

RLSE

If the value is YES, all unused space is released when the dataset is closed. YES is the
default for new or temporary datasets. Can be blank for NO.

CONTIG

If the value is YES, all primary space is allocated on contiguous tracks and cylinders
when more than one cylinder is needed. Can be blank (default/NO).

UNIT

I/O unit—hardware address, device type, or group name. Enter if your installation
requires it.

VOLUME

Required for an existing dataset that is not cataloged or if your installation requires
it.

DEL?

Valid only if DISP=NEW. Values are YES (default), NO, USE, and question mark (?). If
YES is specified, the old dsname is deleted before the new one is allocated. USE

------------------ XPEDITER/TSO - EDIT FILE LIST 2 -(NON-SMS)------ Row 1 of 12
COMMAND ===> SCROLL ===> CSR

Line Commands: Primary Commands: ...MORE ===>
 D (Delete) S (Select detail) CANcel (Quit without saving)
 I (Insert) BR (Browse dataset) COPY (Copy JCL or File List)
 R (Repeat) ED (Edit dataset) SAVE (Save File List)
 FB (File-AID Browse) END (Allocate and continue)
 FE (File-AID Edit)
File Allocation List: 'PFHABCX.ALLOC(FLIST)'
 ---------------- SPACE AND CATALOG INFO --------------------
 DDNAME UNITS PRIMARY SECONDARY DIR RLSE CONTIG UNIT VOLUME DEL?
--
''''' INFILE
''''' OUTFILE TRK 4 2 YES YES
''''' REPORT01
''''' REPORT02
''''' MASTERIN
''''' MASTEROU TRK 40 20 YES YES
''''' SORTWK01 CYL 1 1 YES YES SYSDA
''''' SORTWK02 CYL 1 1 YES YES SYSDA
''''' SORTWK03 CYL 1 1 YES YES SYSDA
''''' ALTERNAT
''''' TEMP1 2048 200 200 YES

A-10 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
changes a DISP of NEW to OLD if the dataset exists. A question mark (?) causes you
to be prompted for the desired action.

Edit File List 2A Screen - SMS Parameters

The Edit File List 2A screen shown in Figure A-9 is used to enter the SMS parameters (data
class, storage class, and management class) associated with the ddname.

When file information is copied from existing file lists, CLISTs, or JCL, this information
is prefilled on this screen.

Figure A-9. Edit File List 2A Screen—SMS Parameters

Values for the SMS parameters are:

DATACLAS

Specifies the data class name defined by your site that contains the attributes related
to the allocation of the file list.

STORCLAS

Specifies the storage class name defined by your site that contains the attributes
related to the storage occupied by the file list.

MGMTCLAS

Specifies the management class name defined by your site that specifies how SMS is
to manage the dataset.

DEL?

Valid only if DISP=NEW. Values are YES (default), NO, USE, and question mark (?). If
YES is specified, the old dsname is deleted before the new one is allocated. USE
changes a DISP of NEW to OLD if the dataset exists. A question mark (?) causes you
to be prompted for the desired action.

Edit File List 3 Screen - DCB Parameters

The Edit File List 3 screen in Figure A-10 is used to specify the DCB (data control block)
parameters for each file listed.

When file information is copied from existing file lists, CLISTs, or JCL, this information
is prefilled on this screen.

------------------- XPEDITER/TSO - EDIT FILE LIST 2A-(SMS)---------- Row 1 of 6
COMMAND ===> SCROLL ===> CSR

 Line Commands: Primary Commands: ...MORE ===>
 D (Delete) S (Select detail) CANcel (Quit without saving)
 I (Insert) BR (Browse dataset) COPY (Copy JCL or File List)
 R (Repeat) ED (Edit dataset) SAVE (Save File List)
 FB (File-AID Browse) END (Allocate and continue)
 FE (File-AID Edit)
File Allocation List: 'PFHABCX.ALLOC(FLIST)'
 ----------- SMS --------------
 DDNAME DATACLAS STORCLAS MGMTCLAS DEL?

''''' DDSMS1 DGDG1
''''' DDSMS2 DCLAS02 SCLAS01
''''' DDSMS3 VSAM1
''''' SYSIN
''''' INDATA
''''' VSAM1

Using the File Allocation Utility A-11
Figure A-10. Edit File List 3 Screen—DCB Parameters

Values for the DCB parameters are:

RECFM

Record format. Valid values are:

F FBM VB VBS
FB FBS VBA VS
FBA V VBM U

LRECL

Logical record length. Values are 0 to 32760. Do not specify a LRECL if the RECFM is
U (undefined-length records).

Note: If the LRECL and BLKSIZE fields contain values, it is a good practice to specify
RECFM; however, DSORG should be the default.

BLKSIZE

Block size. Values are 0 to 32760. If your program contains the clause BLOCK
CONTAINS 0 RECORDS, enter a value to prevent an abend when the allocated file is
opened. If fixed block, the value must be a multiple of the LRECL. If variable block,
the value must be equal to or greater than the LRECL plus 4.

If the RECFM and LRECL fields are specified for a new dataset, a default value is
provided for BLKSIZE.

DSORG

Dataset organization. Values are PS, PO, and DA. If DISP=NEW or TEMP, and DIR=0 or
blank, PS is the default.

KEYLEN

Indicates the length of the record key. Values are 1 to 255.

BUFNO

Specifies the number of buffers to be used with the dataset. Values are 1 to 255.

BUFLEN

Indicates the buffer length. Values are 1 to 32760.

------------------- XPEDITER/TSO - EDIT FILE LIST 3 --------------- Row 1 of 12
COMMAND ===> SCROLL ===> CSR
 UP, DOWN, LEFT and RIGHT Scrolling Available
 Line Commands: Primary Commands: ...MORE ===>
 D (Delete) S (Select detail) CANcel (Quit without saving)
 I (Insert) BR (Browse dataset) COPY (Copy JCL or File List)
 R (Repeat) ED (Edit dataset) SAVE (Save File List)
 FB (File-AID Browse) END (Allocate and continue)
 FE (File-AID Edit)
File Allocation List: 'PFHABCX.ALLOC(FLIST)'
 ---------------------- DCB PARAMETERS --------------------
 DDNAME RECFM LRECL BLKSIZE DSORG KEYLEN BUFNO BUFLEN OPTCD

''''' INFILE
''''' OUTFILE FB 121 18997 PS
''''' REPORT01 1330
''''' REPORT02 1330
''''' MASTERIN
''''' MASTEROU
''''' SORTWK01
''''' SORTWK02
''''' SORTWK03
''''' ALTERNAT 19069
''''' TEMP1 FB 80 6160 PS

A-12 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
OPTCD

Optional system services. Valid values are:

A F Q W
B H R Z
C J T
E O U

Displaying File Parameters

Detailed information about the allocation, DCB, protection, and SYSOUT related
parameters for a ddname in the file list can be displayed from any Edit File List screen.

To display detail information for a ddname, enter the S (Select detail) line command next
to the ddname on the Edit File List screen. The File PARMS Menu shown in Figure A-11 is
displayed.

Figure A-11. File PARMS Menu

You can select to look at the allocation, DCB, protection, and SYSOUT parameters for the
selected ddname. Depending on your selection, one of the four Parameters (PARMS)
screens shown in Figure A-12 on page A-13 through Figure A-15 on page A-14 is
displayed. These screens display virtually all keywords/parameters supported by the JCL
DD statements.

The primary commands (which are also used as panel codes) listed at the top of each
screen can be used to display other PARMS screens.

Shortcut: Use left and right scrolling to display the four screens in succession.

Items listed on the screens can be changed by typing over the information.

--------------------- XPEDITER/TSO - FILE PARMS MENU ----------------------
 OPTION ===>

 DDNAME: INFILE DSN: 'SYS2.XPEDITER.V7R2M0.SLXTSAMP(TRIDATA)'

 1 ALLOCATION - Specify dataset allocation parameters
 2 DCB - Specify dataset description parameters
 3 SYSOUT - Specify JES SYSOUT parameters
 4 PROTECTION - Specify dataset security parameters

 Press ENTER to Process or Enter END Command to Terminate

Using the File Allocation Utility A-13
Figure A-12. Allocation PARMS Screen (SA)

Figure A-13. DCB PARMS Screen (SD)

---------------------- XPEDITER/TSO - ALLOCATION PARMS -----------------------
COMMAND ===>

Primary Commands: SA SD (Select DCB) SO (SYSOUT) SP (Protection)
DDNAME: DSN:

 DISP ===> ___ (Status) _______ (Normal Disp) _______ (Conditional Disp)
FAU DEL? ===> ______ (Yes, No, Use, Prompt) FREE ===> _____ (End/Close)

 SPACE ===> _____ (Units) _____ (Primary) _____ (Secondary) ___ (Dir)
 AVGREC _ RLSE ___ (Yes/No) CONTIG ______ ROUND ___ (Yes/No)

 UNIT ===> ________ (Device) __ (Unit Count) DEFER ___ (Yes/No)
 VOL SER ===> ______ ______ ______ ______ ______ (Serial Numbers)
 VOL SEQ ___ VOL COUNT ___ PRIVATE ___ (Yes/No) MSVGP _______
 REF DSN ___

 LABEL ===> ____ (Dataset Seq) ___ (Label Type) OPEN ___ (In/Out)
 RETPD ____ EXPDT ________

 SUBSYS ===> __

STORCLAS ===> _______________ MGMTCLAS ===> ____________

---------------------- XPEDITER/TSO - DCB PARMS ------------------------------
COMMAND ===>

Primary Commands: SA (Select Allocation) SD SO (SYSOUT) SP (Protection)
DDNAME: DSN:

 DCB ===> __ (Ref DSNAME)

 RECFM _____ LRECL _____ BLKSIZE _____ DSORG ___
 OPTCD _____ KEYLEN ___ KEYOFF _____ (SMS Only)

 BFTEK _ BUFNO ___ BUFL _____ BUFOFF __ BFALN _ LIMCT _____
 NCP __ TRTCH ______ DEN _ PRTSP _ STACK _ FUNC _____
 DIAGNS _____ EROPT ___ (ACC/SKP/ABE)

 RECORG ===> __ (SMS Only)

 DSNTYPE ===> ________ (SMS Only)

 LIKE ===> ___ (SMS Only)

DATACLAS ===> ________

A-14 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure A-14. SYSOUT PARMS Screen (SO)

Figure A-15. Protection PARMS Screen (SP)

Converting JCL to a File List
When you specify a dataset that contains JCL, the dataset is displayed on the Select
DDNAME screen shown in Figure A-16 on page A-15. From this data, you can select the
ddnames to be converted to a file list. The parameters (space and catalog or SMS and
DCB) associated with each selected ddname are also copied to the appropriate Edit File
List screens.

The primary commands UP and DOWN or PF keys can be used to scroll the screen.

Note: The primary commands listed on the screen may vary.

Information on the screen can be typed over; e.g., commented lines can be changed to
uncommented lines and the I(nsert), R(epeat), and D(elete) line commands are also
available when editing.

---------------------- XPEDITER/TSO - SYSOUT PARMS ---------------------------
COMMAND ===>

Primary Commands: SA (Select Allocation) SD (DCB) SO SP (Protection)
DDNAME: DSN:

 SYSOUT ===> _ (Class) ________ (Writer) ____ (Form)
 DEST ===> ________ (Node) ________ (User ID)
 HOLD ===> ___ (Yes/No)

 OUTPUT ===> ________ ________ ________ ________ ________ ________ ________

 OUTLIM ===> ________ (Maximum Logical Records)

 CHARS ===> ____ ____ ____ ____ (Table Names)
 UCS ===> ____ (Character Set Code)

 BURST ===> ___ (Yes/No)
 FCB ===> ____ (FCB Name)

 MODIFY ===> ____ ___ (Module Name) _ (Table Reference Character)
 FLASH ===> ____ (Overlay Name) ___ (Overlay Count)
 COPIES ===> ___ (Group) ___ ___ ___ ___ ___ ___ ___ ___ (Group Values)

---------------------- XPEDITER/TSO - PROTECTION PARMS -----------------------
COMMAND ===>

Primary Commands: SA (Select Allocation) SD (DCB) SO (SYSOUT) SP
DDNAME: DSN:

 ACCODE ===> ________ PROTECT ===> ___ (Yes/No)
SECMODEL ===> __
 GENERIC ===> ___ (Yes/No)

Using the File Allocation Utility A-15
Figure A-16. Select DDNAME Screen

Use the primary commands as follows:

END

Copies the selected ddnames. After you enter the END command, but before the files
are copied, any errors are reported. The errors must be corrected before the copy is
performed.

CANcel

Cancels the ddname selection.

Edit

Accesses an ISPF edit session where you can make changes to your JCL.

EXPand

Expands references to cataloged, in-stream procedures and performs symbolic
parameter replacement, making procedures available for use. See “Things to Know
About JCL Expansion” on page A-16 for more information.

SEtup

Displays a screen on which you can enter and change the skeleton job card needed
for the EXPAND function.

Use the line commands as follows:

S (Select)

Selects the DD statements to be copied to the file list. When you select DD
statements, you are basically selecting the file names and all concatenated DD
statements to be copied as a unit. Enter S on a line to select a single statement. Enter
a beginning and ending SS to select all file names between the two entries. When you
enter an S for an EXEC statement, all file names up to the next EXEC statement are
selected. Any combination of these entries can be used to select all the files you
require.

BR (Browse)

Displays the dataset associated with the selected statement.

----------------------- XPEDITER/TSO - SELECT DDNAME --------------- Row 1 of 16
COMMAND ===> SCROLL ===> CSR

LINE COMMAND: S (Select) PRIMARY COMMANDS: END (Process selected statements)
 BR (Browse dataset) CAN (Quit without processing)
 ED (Edit dataset) Edit (Edit JCL using ISPF Editor)
 SEtup JOB Card EXP (Expand JCL procedures)

 SELECT the DDNAMES to be copied to the allocate screen

SEL JCL DATA SET: 'PFHABCX.JCL.CNTL(TRIPROGM)'
--
''''' //ADSA99XA JOB (ACCNT),'USER',MSGCLASS=X,
''''' // NOTIFY=ADSA99X
''''' //*
''''' //STEP1 EXEC PGM=TRIMAINX,PARM='YES'
''''' //STEPLIB DD DSN=ADSA99X.WORK.LINKLIB,DISP=SHR
''''' //INFILE DD DSN=ADSA.CLASS.SOURCE(TRIDATA),DISP=SHR
''''' //OUTFILE DD SYSOUT=A,COPIES=3
''''' //*
''''' //STEP2 EXEC PGM=PROGRAM2
''''' //STEPLIB DD DSN=ADSA.TEST.LOAD,DISP=SHR
''''' //NEWFILE DD DSN=ADSA99X.NEW.OUT,DCB=(RECFM=FB,BLKSIZE=200),
''''' // SPACE=(TRK,(10,10)),DISP=(NEW,KEEP)

A-16 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
ED (Edit)

Displays the dataset associated with the selected statement for editing.

Things to Know About JCL Expansion

There are two ways to expand the JCL:

1. In one mode (job submission), the EXPAND command submits the current JCL as a
job. If there are multiple jobs in the JCL, only the first job is processed; therefore,
you should delete any jobs preceding the one you want to process.

If there is a job card present in the JCL, it is not used for this process. The SETUP
command can be used to look at and change the job card that is used. Consider the
following:

– MSGCLASS, MSGLEVEL, and TYPRUN are supplied by the expand process and
should not be included on the job card.

– The job card should be valid to avoid job-not-found or no-held-output
conditions.

– Include only the minimum parameters required to pass the installation
validation routines. Since the job does not actually run, extra parameters tend to
cause undesired results, such as extra asynchronous messages to the terminal.

2. In the other mode (direct expansion), XPEDITER directly accesses the procedure
libraries. For this to be possible, the installer must have provided the list of datasets
containing the catalogued procedures and you must have read access to all of these
libraries.

Unsupported Keywords and Subparameters

Not all JCL parameters in the JCL dataset are copied to the file list; DEN is one, for
example. The following JCL items are not supported:

• Special ddnames - JOBCAT, JOBLIB, STEPCAT, STEPLIB, SYSPROC
• Datasets extending onto more than five volumes
• Unresolved symbolic references
• Parameters not corresponding to fields on the Edit File List screens.

If a selected ddname contains parameters/keywords not specified on the Edit File List
screens, the Allocate/Copy warning screen shown in Figure A-17 on page A-17 is
displayed.

Errors are identified by ddname, keyword, and JCL statement. If an error is found on a
concatenated file, the name appears in the form ddname+nn.

Using the File Allocation Utility A-17
Figure A-17. Allocate/Copy (Errors) Screen

The errors can be ignored by entering END. The JCL is displayed on the Edit File List 1
screen. To correct the errors, enter the S line command next to the ddname in question.
The Select DDNAME 1 screen is displayed with the selected ddname at the top of the
screen and the cursor positioned at the value in error. You can correct the errors from this
screen.

By entering CANCEL, you are returned to the screen from which you entered the FAU.

Types of Files That Can Be Allocated
This section describes some common types of datasets that can be allocated using the File
Allocation Utility.

Existing Datasets

Existing datasets can be allocated with a disposition of SHR, OLD, or MOD. Unless
exclusive use of a dataset is required for your application, SHR is the recommended
disposition.

A dataset allocation with the disposition of SHR, OLD, or MOD fails if:

1. You request disposition OLD/MOD, but the dataset is already allocated to another
user.

2. You request disposition SHR, but the dataset is already allocated exclusively
OLD/MOD to another user.

3. The dataset is not found (SHR or OLD only).

Notes:

1. For uncataloged datasets, enter the name of the volume on which the dataset resides
in the VOLUME field on the Edit File List 2 screen.

2. For concatenating datasets, 1) list the dataset with the largest block size first; 2) code
the dsnames of the datasets to be concatenated on successive lines, leaving the
DDNAME field blank after the first line; and 3) concatenate a maximum of 255
sequential or 16 partitioned datasets.

------------------ XPEDITER/TSO - ALLOCATE/COPY (ERRORS) ---- ROW 00001 OF 00003
COMMAND ===>

LINE COMMAND: S (Select) PRIMARY COMMANDS: CAN (Quit without processing)

WARNING: The following keywords and subparameters are not supported.

 Press END to continue processing and ignore all these parameters
 or Select a DD statement you wish to correct.

--
''''' DDNAME: DOC1 KEYWORD: LABEL SUBPARAMETER:
 JCL: // DISP=(NEW,CATLG,DELETE),LABEL=(,NL)
--
''''' DDNAME: DOC2 KEYWORD: LABEL SUBPARAMETER:
 JCL: // DISP=(NEW,CATLG,DELETE),LABEL=(,NL)
--
''''' DDNAME: DOC3 KEYWORD: LABEL SUBPARAMETER:
 JCL: // DISP=(NEW,CATLG,DELETE),LABEL=(,NL)
--

A-18 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
New Datasets

To allocate a new dataset, values must be supplied for the DDNAME, DSNAME, DISP
(NEW), UNITS, PRIMARY, and SECONDARY fields on the Edit File List screens. A value
must be entered in the DIR field if you are allocating a PDS. If no value is entered in the
DIR field, the DSORG is assumed to be PS (physical sequential).

Values must also be supplied for the RECFM, LRECL, and BLKSIZE fields unless these
parameters are coded in the program itself. Some versions of MVS will calculate an
optimum blocksize. For these systems, the BLKSIZE field should be left blank or set to
zero. If your version of MVS does not provide this, the FAU will calculate an optimum
block size (based on an installation specification) if you enter the RECFM and LRECL and
leave the BLKSIZE blank.

CAUTION:
If a COBOL program specifies the size of the physical record (BLKSIZE) in the BLOCK
CONTAINS 0 RECORDS clause of the FD entry, the BLKSIZE field should be specified
to avoid a run-time abend.

For a new or temporary dataset, values are prefilled for the UNITS, PRIMARY,
SECONDARY, RLSE, and DEL? fields. YES is entered in the RLSE field to release unused
space when the dataset is closed. Entering YES in the DEL? field tells XPEDITER/TSO to
delete the old file, if any, when attempting to allocate a new dataset.

If your installation requires it, a value must be specified for the UNIT and VOLUME fields
on the Edit File List 2 (space and catalog information) screen.

Dummy Files

Dummy files are generally used for nonessential input and output. These files can also be
used to test program flow without actually processing data. For instance, unwanted
output can be suppressed by giving the output datasets a dummy status.

Since dummy files do not exist, DCB requirements are the same as for a new dataset.
However, since no real allocation occurs, space information is not used.

Temporary Files

Temporary datasets are often used to allocate sort or other work files. Since a temporary
file usually has no dsname, the data it contains is lost whenever the file is freed or when
you log off.

Temporary datasets defined with the TEMP keyword have a system-generated, unique
name. They must generally be allocated as new datasets. Temporary datasets using an
&&name form also have a system-generated name. They cannot be cataloged and are
automatically deleted when the allocation creating them is freed. Thus, they can only be
allocated as OLD while the allocation creating them still exists.

Space and DCB requirements are the same as for other new (or existing) datasets.

In-Stream Data

The data for the program can be provided as part of the file list. To use this feature,
specify an asterisk (*) as the dataset name for the data. You can then use the EDIT and
BROWSE commands to create, modify, and review the data associated with the
allocations.

Since these datasets are temporary, the allocation and DCB parameters are the same as for
temporary datasets. Additionally, since the data is manipulated via the ISPF/PDF editor,
the DCB information must be consistent with ISPF/PDF (fixed or variable length records
and LRECL of 0 to 255 bytes). Also, for compatibility with normal JCL conventions, the

Using the File Allocation Utility A-19
RECFM defaults to FB and the LRECL defaults to 80. If variable length records are
specified, LRECL defaults to 84.

Allocating Files to the Terminal

Sequential files can be allocated to the terminal. SYSOUT files (COBOL DISPLAY verb) are
often allocated to the terminal. The files can be opened for input or output. Unlike other
forms of new datasets, a block size is not required.

If an input file is allocated to the terminal, XPEDITER/TSO suspends the execution of
your program while awaiting terminal input. The keyboard is unlocked and XPEDITER
prompts you to enter data. A slash asterisk (/*) is entered to indicate the end of the file.

SYSOUT Files

The SYSOUT parameter instructs the system to queue the output on a direct access
volume, and system output writers later transcribe the output onto the specified I/O
device. To allocate a SYSOUT file, enter a ddname in the DDNAME field and the
SYSOUT=class parameter in the DSNAME field. The SYSOUT class can be any
alphanumeric (A-Z, 0-9) character or an asterisk (*) - default. As with a terminal file, a
block size is not required.

Generation Datasets

A generation data group (GDG) is a collection of cataloged datasets that have the same
name and are related to one another chronologically. A GDG can consist of sequential,
partitioned, and direct datasets residing on direct access volumes. The GDG dsname is
limited to 35 characters. Each generation can be distinguished from the others by its
relative or absolute generation number. A relative generation number cannot exceed 255.

To create or retrieve a generation dataset, enter the GDG name, followed by its relative
(or absolute) number in the DSNAME field. If a relative generation number is used, you
cannot also specify a member name.

If GDG stability was set to YES during the installation process, the relative generation
numbers remain static during a TSO session. Specifically, if you create a new generation
with a relative generation number of +1 and you want to refer to it later during your
session, continue to refer to it as +1.

If GDG stability was set to NO during the installation process, the positive relative
numbers will always allocate a new dataset relative to the current generation,
notwithstanding any prior use of the same generation.

This stability has implications when multiple new generations are allocated in TSO, but
are not allocated in ascending order. You must assume that a GDG has 25 generations at
TSO LOG and the following allocations have been made:

ALLOCATE STABILITY=NO STABILITY=YES
 GDG(+2) creates G0027V00 (25+2) allocates G0027V00
 GDG(+1) creates G0028V00 (27+1) allocates G0026V00
 GDG(0) allocates G0028V00 (28+0) allocates G0025V00

On the DCB PARMS screen, enter the name of a fully qualified dataset where
XPEDITER/TSO can obtain the model DCB information, unless a model DSCB was created
for the generation data group. If a PDS is specified, do not include a member name.

If all the generations in a GDG have identical DCB attributes, the generations can be
retrieved together as a single dataset. To process the entire GDG, enter its dsname
without a relative generation number.

A-20 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
ISAM Files

ISAM files can be allocated, but certain IBM SVC 99 restrictions for ISAM files also apply:

• The data and key areas must be in the same dataset, on one volume.
• The file cannot be NEW.

B-1

Appendix A.Appendix B.

BXPEDITER/TSO Environment Test Screens App B

The first time you invoke an XPEDITER test session using option 2 (TSO) on the Primary
Menu, the XPEDITER/TSO Environments Menu shown in Figure B-1 is displayed.

Note: The range of environment options available on this menu depends on the site
defaults set by your installer.

Each option on the Environments Menu accesses a test screen. The environment test
screens are used to specify the name of the program to be tested and other parameters
associated with the program and the test session. For example, if you are testing a
program in a standard environment with no special services, you would select option 1
(Standard). When you press Enter, the Standard Environment screen shown in Figure B-3
on page B-4 is displayed.

Figure B-1. XPEDITER/TSO Environment Menu

The structure diagram in Figure B-2 on page B-2 shows the menu hierarchy of the
execution environments you can select.

Profile: DEFAULT ----- XPEDITER/TSO - ENVIRONMENTS MENU ------------------------
OPTION ===>

 XPEDITER/TSO
 1 STANDARD - Test a program with no special environment services
 2 DIALOG - Test programs that make ISPF dialog manager calls
 3 IMS - Test a program that makes IMS/DB calls
 4 BTS - Test programs using BTS
 5 BATCHPEM - Test a program in a Hogan BATCHPEM environment
 6 DLIPEM - Test a program in a Hogan DLIPEM/BMPPEM environment
 7 IMSPEM - Test a program in a Hogan BTS IMSPEM environment

 XPEDITER/IMS
 8 MPP - Test programs in an IMS message region
 9 BMP/IFP - Test a program in a BMP or Fast Path region
 10 IMSPEM - Test Hogan IMSPEM in an IMS message region
 11 BMPPEM - Test Hogan BMPPEM in a BMP region

 DB2 STORED PROCEDURES
 12 DB2SP - Test DB2 Stored Procedure interactively

 Note: The environment highlighted is currently selected.

 Press ENTER to process or enter END command to terminate

B-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure B-2. Diagram of the Execution Environment

Each option in Figure B-2 represents the test screen for the environment. The test screens
let you specify the environment parameters for initiating a debugging session.

XPEDITER/TSO
Environments

STANDARD
(Option 1)

BATCHPEM
(Option 5)

DIALOG
(Option 2)

DIALOG
Invoke

IMS
(Option 3)

IMSPEM
(Option 7)

BTS
(Option 4)

DLIPEM
(Option 6)

XPEDITER/IMS
Environments

BMPPEM
(Option 11)

BMP/IFP
(Option 9)

MPP
(Option 8)

IMSPEM
(Option 10)

DB2 STORED
PROCEDURES
Environment

DB2SP
(Option 12)

XPEDITER/TSO Environment Test Screens B-3
Some test screens have commands that will access submenus. The commands that may
appear on a test screen are described below:

SE (SETUP)

Displays the Setup Menu. The options on the Setup Menu display submenus that are
used to override the default values defined at your site. You can specify the load
libraries, DDIO files, test script libraries, session log and test script dataset
disposition, DSN libraries, and PANEXEC load libraries. The SETUP command is valid
on all test screens.

PROFile (PROFILE)

Displays a list of current user profiles that retain information about XPEDITER test
environments. You may Select (S), Delete (D), Copy (C), Rename (R), or Use (U) the
profiles stored in the displayed file by entering the appropriate line command in the
CMD (Command) field. You may also utilize the only Primary Command, the Merge
command. This command lets you copy other user’s profiles to your own profile.

L, LO (LOG)

Browses the session log. The log file contains a record of the commands that were
entered during the debugging session and the responses to them.

The LOG command is valid on all the test screens where it is displayed. However, the
log cannot be viewed until you return to the test screen after testing has been
performed.

SC (SCRIPT)

Browses and edits the test script created during the debugging session. A sequential
test script file contains commands recorded during the debugging session. The
generated test script must be moved to a member of an INCLUDE library for it to be
executed.

The SCRIPT command is valid on all test screens where it is displayed, but the script
cannot be viewed until you return to the test screen after testing has been performed.

BT (BTSIN)

Displays a list of BTS transactions that you can select to debug. Any transactions
selected through the use of the BTSIN command are automatically entered on the
BTS or Hogan IMSPEM screen.

The BTSIN command is valid only on the BTS and Hogan IMSPEM test screens.

SY (SYSIN)

Displays the Hogan SYSIN dataset, so you can edit the control cards. The SYSIN
command is valid only on the Hogan test screens.

IN (INTER)

Displays a list of transactions that are intercepted by XPEDITER/IMS.

UP (UP)

Scrolls toward the top of your screen. Scrolling up rolls the screen downward,
bringing the previous section of the data into view.

DO (DOWN)

Scrolls toward the end of your screen. Scrolling down rolls the screen upward,
bringing the following section of the data into view.

D (DOCEDIT)

Browses and edits the document dataset. The document dataset is a sequential file
that contains JCL used to collect site information for later transfer to XPEDITER/TSO
Technical Support.

B-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
The DOCEDIT command is valid on all test screens where it is displayed, but the JCL
cannot be viewed unless the DOCUMENT command has been entered during the test
session.

Standard Test Screen – Environments Menu - Option 1
The Standard Test screen (Environments Menu) shown in Figure B-3 on page B-4 is used
to specify the standard environment parameters. Batch programs that process QSAM or
VSAM files, batch programs that issue third-party database calls (IMS/DB, ADABAS,
TOTAL, TIS, SUPRA, DATACOM/DB, and System 2000), and batch programs that issue
EXEC SQL (DB2) statements can be executed in this environment.

Figure B-3. Standard Environment Screen

The fields on the Standard Environment screen are described below:

Program

Required. Enter the name of the load module.

Note: If executing other than the linked entry name, then the program name is the
CSECT name and the load module name must be specified under Load
Module.

Entry Point

Enter an alternate entry point if execution is to start at a point other than the link-
edited entry point.

Load Module

Enter only if executing a CSECT other than the link-edited entry point of a load
module, such as unit testing CSECTs within a load module.

Initial Script

Enter the member name of a test script if you want to execute a predefined command
stream at the beginning of the debugging session. This member will be executed after
the inclusion of the Site-wide script member @@SITE@@, if defined.

 Profile: DEFAULT ------ XPEDITER/TSO - STANDARD (2.1) -----------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 PROFile (Display Profile Selection)
 TEST SELECTION CRITERIA:

 Program ===> SQL
 Entry Point ===>
 Load Module ===>

 Initial Script ===>
 Post Script ===>

 PARM (Caps = YES) ===>

 File List/JCL Member ===>
 Preview Files? ===> NO
 Code Coverage Test? ===> NO
 Is This a DB2 Test? ===> NO Plan ===> System ===>

 Press ENTER to process or enter END command to terminate

XPEDITER/TSO Environment Test Screens B-5
Post Script

Enter the member name of a test script if you want to execute a predefined command
stream at the end of the debugging session.

PARM (Caps=YES)

When this field is left blank:

If JCL PROC expansion option CONVERT is being used and the step you are testing
has the PARM= keyword, XPEDITER/TSO will use the JCL-supplied PARM value. To
make XPEDITER ignore the JCL-supplied PARM value, enter two consecutive single
quotes ('') in this field.

When this field is non-blank:

Up to 100 characters may be specified in this field to pass parameter string(s) and/or
run-time option(s) to the program being tested. If the field consists of several
substrings separated by commas, or if it contains special characters (/, =, etc.),
enclose the entire parameter in quotes (single or double).

The Caps field can be used to designate whether or not you want the PARM string to
be converted to upper case.

Note: This conversion applies only to the parameter string entered on this screen
and not to any PARM values supplied in the JCL.

File List/JCL Member

Enter the dataset name that contains the file list, CLIST, or JCL. The File Allocation
Utility (FAU) preallocates files and databases that are processed by the program upon
entry to the debugging session.

If the member name of a PDS is omitted, a member list is displayed.

If the dataset contains a CLIST, XPEDITER/TSO immediately executes it and begins
the debugging session.

If the dataset contains a file list or JCL, the FAU is invoked to dynamically allocate
the specified files before beginning the debugging session. Refer to Appendix A,
“Using the File Allocation Utility” for detailed information about the FAU.

Preview Files?

Enter YES to browse or edit the content of files prior to allocation. For more
information, see “Using the Edit File List Screens” on page A-4.

Code Coverage Test?

Enter YES if XPEDITER/Code Coverage data should be collected for this test. The
default value is NO.

Note: The Code Coverage option is only available if you have purchased
XPEDITER/Code Coverage.

Is This a DB2 Test?

Enter YES if the program executes EXEC SQL statements. XPEDITER/TSO executes
the DSN RUN command and establishes the DB2 environment upon entry to the
debugging session. The default value is NO.

Plan

Enter the DB2 plan name generated during the bind process. If omitted, the plan
name defaults to the name specified in the Program field.

System

Enter the DB2 subsystem name. The subsystem name depends on the release level of
DB2 allocated to the DSNLOAD library specified on the Setup option.

B-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Note: If the following conditions are met, XPEDITER will search the JCL member’s
SYSTSIN DD for the plan name and/or system name and use values found for the
current debugging session:

• File List/JCL Member field contains a JCL library
• Is This a DB2 Test? field set to YES
• Plan and/or System field(s) blank
• JCL PROC expansion set to CONVERT.

If a plan name is not found in the JCL, the default will be used. If a system name
is not found, an error will result. Also, if the Library keyword is used in the
SYSTSIN DD, XPEDITER will concatenate the dataset after the user libraries that
were specified on the Load Module Libraries screen.

Press Enter to initiate the debugging session. Refer to Chapter 5, “Debugging
Interactively” for information on how to debug your program.

Dialog Test Screen – Environments Menu - Option 2
The Dialog Test screen, shown in Figure B-4 on page B-6, lets you specify the dialog
environment parameters and initiate a debugging session. The screen is designed to allow
programmers to debug ISPF dialog programs that are running as a part of the larger
application process. For instance, programs that are invoked by entering data from an
ISPF panel, issuing an edit macro, or executing a CLIST can be debugged in this
environment.

All the dialog components, such as screens, CLISTs, tables, messages, and load modules,
must be preallocated before initiating the debugging session unless the dialog includes a
function to use the ISPF LIBDEF facility. Refer to the IBM ISPF Dialog Management Services
Manual for additional information regarding file allocations for dialog testing.

Note: The load module libraries must be allocated to ISPLLIB and be included in the
XPEDITER load library list.

Figure B-4. Dialog Test Screen

The fields on the Dialog Test screen are described below.

 Profile: DEFAULT ------- XPEDITER/TSO - DIALOG (2.2) ------------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 PROFile (Display Profile List)
 DOwn (Scroll Down)
 INTERCEPTS

 PROGRAM INITSCR POSTSCR START MAX
 ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===>

 ISPF Menu ===> ISR@PRIM OPT ===> APPLID ===> ISR

 File List/JCL Member ===>
 Preview Files? ===> NO
 Code Coverage Test? ===> NO
 Is This a DB2 Test? ===> NO System ===>

 Press ENTER to process or enter END command to terminate

XPEDITER/TSO Environment Test Screens B-7
PROGRAM

Required. Enter a series of load module names that you want to debug when the
dialog is invoked. You must specify either the main program or subprograms. Do not
specify both.

Six load modules can be specified on this screen. If you want to continue the list, you
can scroll down to a subsequent screen.

INITSCR

Enter the member name of a test script if you want to execute a predefined command
stream at the beginning of the debugging session. This member will be executed after
the inclusion of the Site-wide script member @@SITE@@, if defined.

POSTSCR

Enter the member name of a test script if you want to execute a predefined command
stream at the end of the debugging session.

START

Enter up to four digits to specify on which occurrence of the program invocation the
intercept is to begin. By default, program intercept begins on the first occurrence.
When the program is intercepted, the debugging session is initiated and the source is
displayed.

MAX

Enter up to four digits to specify the maximum number of times the program
intercept is processed. If this field is left blank, the value defaults to an infinite
number. If you enter an EXIT command and there are still intercepts remaining,
those intercepts are ignored.

ISPF Menu

Required. Specify the driver panel to start your dialog application. Typically, this is
the ISPF/PDF Primary Option Menu, ISR@PRIM. You can initiate your dialog
application through the dialog test facilities (option 7.1 of ISPF/PDF) and trace the
ISPF variables while tracing the host variables and setting breakpoints at the COBOL
verbs under XPEDITER/TSO.

Compuware supplies a separate panel, XPPISPFT, which is functionally similar to the
ISPF Dialog Test option 1. To use this panel to identify the dialog function to be
debugged, enter XPPISPFT in the ISPF Menu field.

OPT

If you use XPPISPFT, leave this field blank. Otherwise, enter the starting point by ISPF
option number (for example, 7.1).

APPLID

Enter the application ID.

File List/JCL Member

Enter the dataset name that contains the file list, CLIST, or JCL. The File Allocation
Utility (FAU) preallocates files and databases that are processed by the program upon
entry to the debugging session.

If the member name of a PDS is omitted, a member list is displayed.

If the dataset contains a CLIST, XPEDITER/TSO immediately executes it and begins
the debugging session.

If the dataset contains a file list or JCL, the FAU is invoked to dynamically allocate
the specified files before beginning the debugging session. Refer to Appendix B,
“XPEDITER/TSO Environment Test Screens” for detailed information about the FAU.

B-8 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Preview Files?

Enter YES to enable browse/edit of file allocations. If File-AID is installed, its file
browse (FB) and file edit (FE) functions will also be available.

Code Coverage Test?

Enter YES if XPEDITER/Code Coverage data should be collected for this test. The
default value is NO.

Note: The Code Coverage option is only available if you have purchased
XPEDITER/Code Coverage.

Is This a DB2 Test?

Enter YES if the program executes EXEC SQL statements. XPEDITER/TSO selects the
proper DB2 libraries for inclusion in the setup library (XTASKLIB) concatenation.

The DB2 connection must be established, such as executing the TSO DSN RUN
command, before initiating the debugging session.

System

Enter the DB2 subsystem name. Use the subsystem name assigned to the DB2
DSNLOAD library to be included in XTASKLIB.

When you press Enter from the Dialog screen, the specified ISPF screen is displayed, but
you must invoke the program or edit macro as you would if you were debugging without
XPEDITER/TSO.

To invoke a function on the XPPISPFT screen, shown in Figure B-5 on page B-9, only one
entry is required in one of the following fields: PANEL, CMD, or PGM.

Note: When control is passed from XPEDITER/TSO to any user panel, all XPEDITER
commands become inactive.

Effect of Dialog Program Intercepts

Each of the programs named on the Dialog screen must be an MVS load module name.
Programs named in the intercept list must not be referenced within the XPEDITER
session with the SOURCE or INTERCEPT command. These programs will be intercepted
under XPEDITER dialog control when activated by sequences of LOAD/CALL, LINK, or
ATTACH. Typical external events that can result in one of these sequences are: running
the programs as TSO command processors, naming the programs as the target of a TSO
CALL command, or executing the programs via ISPF SELECT services. Each of the
programs should be independent of any other program named in the intercept list.

When the programs are not independent, special processing is performed by XPEDITER
and user interaction is necessary to test multiple programs simultaneously. For example,
assume that program PGMA calls program PGMB, which then calls program PGMC. Also,
assume that all three programs are named as dialog intercepts. When PGMA is activated
by the user dialog, an XPEDITER session is initiated and the source of PGMA is displayed.
During the execution of PGMA, PGMB is eventually activated. However, since XPEDITER
is already active for the PGMA intercept, PGMB is not intercepted and executes as if no
intercept had been set. The same is true for PGMC.

There are two ways in which such a nested sequence of programs can be tested. The first
method is to name only PGMA on the Dialog screen. When PGMA is intercepted, then
SOURCE or INTERCEPT commands can be used to reference PGMB and PGMC. A second
method can be used when programs are executed multiple times within the dialog. The
START and MAX values determine when the intercepts are to be active for each program
in the list. For example, let PGMA and PGMB both be named in the intercept list with the
MAX value for PGMA set to 3. Now when the user dialog invokes PGMA repetitively,
PGMA is intercepted each of the first three times it executes, but on the fourth and
subsequent executions, when PGMA calls PGMB, XPEDITER intercepts PGMB.

XPEDITER/TSO Environment Test Screens B-9
Figure B-5. XPPISPFT - Invoke Dialog Function/Selection Panel

The fields on the Invoke Dialog Function/Selection Panel are described below:

PANEL

Name of the ISPF panel to be invoked. Required if CMD or PGM is not specified.

OPT

Optional; the initial option that must be valid on the panel named above.

CMD

The name of a command procedure (CLIST or EXEC), or any TSO command, to be
invoked as a dialog function. Command parameters can be included. Required if
PANEL or PGM is not specified.

LANG

Specify APL if the string specified by the CMD keyword is an APL function and the
APL2 environment is active. Otherwise, leave blank.

MODE

Determines whether line mode will be entered or not. LINE causes line mode to be
entered. FSCR causes full screen mode to be entered. If you leave MODE blank when
selecting a command procedure, line mode is entered unless you prefix the command
with a percent sign (%).

PGM

The name of a program to be invoked as a dialog function. The program name must
be one of the program names specified in the previous Dialog screen. Otherwise, it
causes an abend. Required if PANEL or CMD is not specified.

PARM

Optional; parameters to be passed to the program.

TASKLIB

Enter Yes if XTASKLIB is to be searched for the specified program name. The default
is No.

------------------- INVOKE DIALOG FUNCTION/SELECTION PANEL -------------------
COMMAND ===>

Invoke Selection Menu:
 PANEL ===> OPT ===>

Invoke Command:
 CMD ===>

 LANG ===> (APL or blank)
 MODE ===> (LINE, FSCR, or blank)

Invoke Program:
 PGM ===> TASKLIB ===> NO (Yes/No)
 PARM ===>

 MODE ===> (LINE, FSCR, or blank)

For Any Of The Above:
 NEWAPPL ===> (Optional. Application ID)
 NEWPOOL ===> (Yes/No)
 PASSLIB ===> (Yes/No)

B-10 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
NEWAPPL

Specifies the new application ID name, if one is being invoked. If a new application
is specified, the next selection menu displayed is the application’s primary option
menu.

NEWPOOL

Enter Yes if a new shared variable pool is to be created. This value is ignored if
NEWAPPL is specified.

PASSLIB

Enter Yes if the current set of application level ISPF libraries (if any exist) are to be
passed to the application being selected. This field is valid only if NEWAPPL is
specified.

To invoke a function through the ISPF Menu ISR@PRIM, select option 1 (FUNCTIONS) on
the Dialog Test Primary Option Menu shown in Figure B-6 on page B-10.

Figure B-6. Dialog Test Primary Option Menu

Then specify the function to be invoked in one of the following fields on the Invoke
Dialog Function/Selection Menu shown in Figure B-7 on page B-11: PANEL, CMD, or
PGM.

--------------------- DIALOG TEST PRIMARY OPTION MENU ------------------------
OPTION ===>

 1 FUNCTIONS - Invoke dialog functions/selection menus
 2 PANELS - Display panels
 3 VARIABLES - Display/set variable information
 4 TABLES - Display/modify table information
 5 LOG - Browse ISPF log
 6 DIALOG SERVICES - Invoke dialog services
 7 TRACES - Specify trace definitions
 8 BREAKPOINTS - Specify breakpoint definitions
 T TUTORIAL - Display information about Dialog Test
 X EXIT - Terminate dialog testing

 Enter END command to terminate dialog testing.

XPEDITER/TSO Environment Test Screens B-11
Figure B-7. ISR@PRIM - Invoke Dialog Function/Selection Menu

Press Enter to initiate the debugging session. Refer to Chapter 5, “Debugging
Interactively” for information on how to debug your program.

IMS Test Screen – Environments Menu - Option 3
The IMS Test screen, shown in Figure B-8 on page B-11, lets you specify the IMS/DB
environment parameters and initiate a debugging session. Batch programs that issue
IMS/DB database calls or both IMS/DB and DB2 database calls can be executed in this
environment.

Figure B-8. IMS Test Screen

The fields on the IMS Test screen are described below:

-------------------- INVOKE DIALOG FUNCTION/SELECTION MENU -------------------
COMMAND ===>

INVOKE SELECTION MENU:
 PANEL ===> OPT ===>

INVOKE COMMAND:
 CMD ===>

 LANG ===> (APL OR BLANK)

 MODE ===> (LINE, FSCR, OR BLANK)

INVOKE PROGRAM:
 PGM ===> PARM ===>

 MODE ===> (LINE, FSCR, OR BLANK)

NEWAPPL ===> ID ===>

NEWPOOL ===> PASSLIB ===> NO

 Profile: DEFAULT --------- XPEDITER/TSO - IMS (2.3) -------------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 PROFile (Display Profile List)
 TEST SELECTION CRITERIA:

 Program ===> SQL
 Entry Point ===>
 Load Module ===>

 Initial Script ===>
 Post Script ===>

 PSB ===>
 Program Type ===> DLI (DLI, BMP, DBB)
 PARM Passing Option ===> STD (STD, SUB, NOQ)

 File List/JCL Member ===>
 Code Coverage Test? ===> NO
 Is This a DB2 Test? ===> NO Plan ===> System ===>

 Press ENTER to process or enter END command to terminate

B-12 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Program

This field is required. Enter the name of the load module.

Note: If executing other than the linked entry name, then the program name is the
CSECT name and the load module name must be specified under Load
Module.

Entry Point

Enter an alternate entry point if execution is to start at a point other than the link-
edited entry point.

Load Module

Enter only if executing a CSECT other than the link-edited entry point of a load
module, such as unit testing CSECTs within a load module.

Initial Script

Enter the member name of a test script if you want to execute a predefined command
stream at the beginning of the debugging session. This member will be executed after
the inclusion of the Site-wide script member @@SITE@@, if defined.

Post Script

Enter the member name of a test script if you want to execute a predefined command
stream at the end of the debugging session.

PSB

Required. Enter the name of the program specification block (PSB) associated with
the program. The PSB defines the database accessed by the program and the type of
I/O operations performed.The PSB name for MPP programs should be the same as the
load module name.

If you are debugging a subordinate module that does not have a PSB, but does make
DLI calls, you must supply the PSB of the main program.The USE command is used to
specify which PCB in the PSB of the calling module should be associated with the
PCB defined in the Linkage Section of the subroutine.

Program Type

Required. Enter the type of IMS program. It is generally the first parameter value
passed to IMS in the JCL. This field can have one of the following values:

Note: These program types are retrieved from the PARM lists in the Setup option.
Your specific site options determine which program types are available on
the screen.

BMP A BMP program is attached to a control region. The particular control
region is determined by the IMS RESLIBS allocated and the IMSID within
the BMP parameter.

DBB A DBB program is processed in an offline DL/I batch processing region
using ACB libraries instead of PSB and DBD libraries.

DLI A DL/I program is processed in an offline DL/I batch processing region
using PSB and DBD libraries.

XPEDITER/TSO Environment Test Screens B-13
PARM Passing Option

Required. Default values are prefilled for this field. The valid PARM passing options
are:

File List/JCL Member

Enter the dataset name that contains the file list, CLIST, or JCL. The File Allocation
Utility (FAU) preallocates files and databases that are processed by the program upon
entry to the debugging session.

If the member name of a PDS is omitted, a member list is displayed.

If the dataset contains a CLIST, XPEDITER/TSO immediately executes it and begins
the debugging session.

If the dataset contains a file list or JCL, the FAU is invoked to dynamically allocate
the specified files before beginning the debugging session. Refer to Appendix A,
“Using the File Allocation Utility” for detailed information about the FAU.

Code Coverage Test?

Enter YES if XPEDITER/Code Coverage data should be collected for this test. The
default value is NO.

Note: The Code Coverage option is only available if you have purchased
XPEDITER/Code Coverage.

Is This a DB2 Test?

Enter YES if the program executes EXEC SQL statements. The default value is NO.

Plan

Enter the DB2 plan name generated during the bind process if the program executes
EXEC SQL statements. If omitted, the plan name defaults to the name specified in
the Program field.

System

Enter the DB2 subsystem name. The subsystem name depends on the release level of
DB2 allocated to the DSNLOAD library specified in the Setup option.

Note: If the following conditions are met, XPEDITER will search the DDITV02 DD for
the plan name and/or system name and use values found for the current
debugging session:
 - Is This a DB2 Test? field set to YES
 - Plan and/or System fields blank
 - JCL PROC expansion set to CONVERT
 - Program name DSNMTV01 specified in JCL’s IMS PARM
 - DDITV02 DD used to supply IMS with DB2 information.

STD Specify STD when debugging an IMS program. XPEDITER/TSO passes the
PARM string to the program unaltered. STD is the default.

SUB Specify SUB when an IMS subroutine is to be debugged as a stand-alone
program. No PARM string is needed because you are debugging an IMS
subroutine without the IMS driver module present.Issue a USE command to
assign addressability to the PSB at the beginning of the debugging session.

NOQ Specify NOQ (no queue) when you are debugging an IMS/DC program with
XPEDITER/TSO.

XPEDITER/TSO matches the PARM string that IMS passes to theprogram
with the PARM string that the program is expecting in reverse order. This
lets you debug the logic and database calls of an IMS/DC program under
TSO when a message queue is not available.

B-14 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
If a plan name is not found in the DDITV02 DD, the default will be used. If a
system name is not found, an error will result.

Press Enter to initiate the debugging session. Refer to Chapter 5, “Debugging
Interactively” for information on how to debug your program.

BTS Test Screen – Environments Menu - Option 4
The BTS Test screen, shown in Figure B-9, lets you specify the BTS environment
parameters and initiate a debugging session. IMS/DC, MPP, and BMP programs can be
debugged with the use of BTS in this environment.

Figure B-9. BTS Test Screen

The fields on this screen are described below:

PROGRAM

Required if TRANCODE is not specified. Used to identify which programs are to be
debugged by XPEDITER/TSO. You can enter the load module name in this field, the
transaction code in the TRANCODE field, or supply values for both fields. If you
enter only the program name, all the transactions associated with that program are
intercepted by XPEDITER/TSO. If you enter only a transaction code, its associated
program is intercepted.

Three programs or transaction codes can be specified on the BTS Test screen. If you
want to continue the list, you can scroll down to a second BTS test screen, shown in
Figure B-10. The last entry on the previous page is displayed in the top row. Once the
second screen is full, you can scroll down to a third screen. Notice that on the second
(and subsequent screens), the UP command is available in addition to the DOWN
command.

 Profile: DEFAULT --------- XPEDITER/TSO - BTS (2.4) -------------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 BTsin (Display BTSIN Menu)
 PROFile (Display Profile List) DOwn (Scroll Down)
 INTERCEPTS

 PROGRAM TRANCODE INITSCR POSTSCR START MAX
 ===> PQ4CODEL ===> TQ4COCNG ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>

 BTSIN ===> XPEDITER.BTSIN
 Program Type ===> DLI (DLI, BMP, DBB)

 PARM Passing Option ===> STD (STD) Retain Breakpoints? ===> NO

 File List/JCL Member ===> XPEDITER.FLIST(TRIMPP)

 Code Coverage Test? ===> NO Test Unattended? ===> NO
 Is This a DB2 Test? ===> NO System ===>

 Press ENTER to process or Enter END command to terminate

XPEDITER/TSO Environment Test Screens B-15
Figure B-10. BTS Test Screen 2

TRANCODE

Required if PROGRAM is not specified. Used to identify which transactions are to
be debugged by XPEDITER/TSO. You can enter the transaction code in this field, the
load module name in the PROGRAM field, or enter values for both fields.

Each transaction code must be unique. If you enter only a transaction code, its
associated program is intercepted. However, multiple transactions can invoke the
same program. Therefore, if you enter only the program name, all transactions
associated with the program are intercepted for debugging under XPEDITER/TSO.

INITSCR

Enter the member name of a test script if you want to execute a predefined command
stream at the beginning of the debugging session. This member will be executed after
the inclusion of the Site-side script member @@SITE@@, if defined.

POSTSCR

Enter the member name of a test script if you want to execute a predefined command
stream at the end of the debugging session.

START

Enter up to four digits to specify on which occurrence of the program invocation the
intercept is to begin. By default, program intercept begins on the first occurrence.
When the program is intercepted, the debugging session is initiated and the source is
displayed.

MAX

Enter up to four digits to specify the maximum number of times the program
intercept is processed. If this field is left blank, the value defaults to an infinite
number. If you enter an EXIT command and there are still intercepts remaining,
those intercepts are ignored.

BTSIN

Required. XPEDITER/TSO scans the BTSIN dataset and searches for the program and
transaction code to be debugged. An intercept is established for each one found. The
BTSIN dataset must be either a sequential dataset or a member of a partitioned
dataset. The BTSIN cards should not be modified.

 Profile: DEFAULT --------- XPEDITER/TSO - BTS (2.4) -------------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 BTsin (Display BTSIN Menu)
 PROFile (Display Profile List) UP (Scroll Up) DOwn (Scroll Down)
 INTERCEPTS Row 1 of 1

 PROGRAM TRANCODE INITSCR POSTSCR START MAX
 ===> PQ4CODEL ===> TQ4COCNG ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>

 Press ENTER to process or enter END command to terminate

B-16 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Entering BTSIN on the command line of the BTS screendisplays a list of transactions
(./T cards) in the BTSIN file (shown in Figure B-11). You can enter the S (Select) line
command next to the transaction you want to debug and return to the BTS screen.
The selected transactions are automatically filled in for the appropriate fields.

Note: When testing DB2 under the BTS/DLI environment, you must define the DB2
subsystem name to BTS by using the ./P statement as part of the BTSIN
control cards.

Figure B-11. BTS Transaction/Program Menu

Program Type

Required. Enter the type of IMS program. It is generally the first parameter value
passed to IMS in the JCL. This field can have one of the following values:

Note: These program types are retrieved from PARM lists in the Setup option. Your
specific site options determine which program types are available on the
screen.

PARM Passing Option

Required. Default values are prefilled for this field. The valid PARM passing option is
STD. If you specify STD when debugging an IMS program, XPEDITER/TSO passes the
PARM string to the program unaltered.

Retain Breakpoints?

If you want XPEDITER to retain breakpoints from one iteration of an IMS or BTS
program or transaction to the next, enter YES in this field. Before breakpoints, after
breakpoints, counts, skips, traces, Code Coverage breakpoints, and when conditions
from the previous test iteration will be reapplied. Count values will accumulate
across iterations, but a count with a maximum execution limit will be converted to a
standard counter. Keeps and inserted lines are not retained.

The default is NO and will result in each iteration starting with only the standard
before and after breakpoints.

BMP A BMP program is manually scheduled by the system operator and,
typically, processes some data that was held by IMS in a message queue.

DBB A DBB program is processed in an offline DL/I batch processing region
using ACB libraries instead of PSB and DBD libraries.

DLI A DL/I program is processed in an offline DL/I batch processing region
using PSB and DBD libraries.

Profile: DEFAULT ----- BTS TRANSACTION/PROGRAM MENU ------------ ROW 9 OF 19
COMMAND ===>

 Select Any Transactions/Programs To Be Tested With XPEDITER

 Enter END Command To Return To The Previous Menu

SELECT -------------- ./T CARDS FROM BTSIN DATA SET --------------------
 TC=TQ4CNINQ MBR=PQ4CNINQ PSB=PQ4CNINQ LANG=CBL TYPE=MSG
 TC=TQ4COINQ MBR=PQ4COINQ
 TC=TQ4COINQ MBR=PQ4COINQ PSB=PE4COINQ LANG=CBL TYPE=MSG
 TC=TQ4CONEW MBR=PQ4CORDR PSB=PE4CORDR LANG=CBL TYPE=MSG SPA=1300
 TC=TQ4CODEL MBR=PQ4CODEL PSB=PE4CODEL LANG=CBL TYPE=MSG SPA=1300
 TC=TQ4COCNG MBR=PQ4CODEL PSB=PE4CODEL LANG=CBL TYPE=MSG SPA=1300
****************************** BOTTOM OF DATA ****************************

XPEDITER/TSO Environment Test Screens B-17
File List/JCL Member

Enter the dataset name that contains the file list, CLIST, or JCL. The File Allocation
Utility (FAU) preallocates files and databases that are processed by the program upon
entry to the debugging session.

If the member name of a PDS is omitted, a member list is displayed.

If the dataset contains a CLIST, XPEDITER/TSO immediately executes it and begins
the debugging session.

If the dataset contains a file list or JCL, the FAU is invoked to dynamically allocate
the specified files before beginning the debugging session. Refer to Appendix A,
“Using the File Allocation Utility” for detailed information about the FAU.

Code Coverage Test?

Enter YES if XPEDITER/Code Coverage data should be collected for this test. The
default value is NO.

Note: The Code Coverage option is only available if you have purchased
XPEDITER/Code Coverage.

Test Unattended?

Enter YES in the ’Test Unattended?’ field to run in Unattended mode. The default
value is NO. In unattended mode, after BTS gives control to the application program,
only XPEDITER commands are processed in the Initial Script, the Post Script, and the
Abend Script. Interactive XPEDITER commands are not permitted (from the
terminal).

Is This a DB2 Test?

Enter YES if the program executes EXEC SQL statements. The default value is NO.

System

Enter the DB2 subsystem name. The subsystem name depends on the release level of
DB2 allocated to the DSNLOAD library specified in the Setup option.

Note: When testing DB2 under the BTS/DLI environment, you must define the DB2
subsystem name to BTS by using the ./P statement as part of the BTSIN
control cards.

Press Enter to initiate the debugging session. BTS will be invoked first and prompt you for
a transaction code to start a transaction. Refer to Chapter 5, “Debugging Interactively”
for information on how to debug your program.

Hogan BATCHPEM Test Screen – Environments Menu -
Option 5

The Hogan BATCHPEM screen, shown in Figure B-12, lets you specify the Hogan
BATCHPEM environment parameters and initiate a debugging session. Batch programs
that run under the Hogan umbrella and process QSAM and VSAM files can be executed in
this environment.

B-18 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure B-12. Hogan BATCHPEM Screen

The fields on the Hogan BATCHPEM screen are defined below:

Initial Script

Enter the member name of a test script if you want to execute a predefined command
stream at the beginning of the debugging session. This member will be executed after
the inclusion of the Site-wide script member @@SITE@@, if defined.

Post Script

Enter the member name of a test script if you want to execute a predefined command
stream at the end of the debugging session.

PARM String

Optional field. Enter the parameter string to be passed to the Hogan PEM driver
program. You can enter up to 100 characters in this field.

If the run-time parameter consists of several substrings separated by commas, or if it
contains special characters (/, =, etc.), enclose the entire parameter in quotes (single
or double).

Hogan SYSIN Data Set

A control file used by Hogan programs. Enter SYSIN on the command line to edit or
create the SYSIN dataset, shown in Figure B-13 on page B-18.

Figure B-13. Displaying the SYSIN Dataset

Hogan PEM Driver

The name of the Hogan driver. BATCHPEM is the default.

 Profile: DEFAULT ---- XPEDITER/TSO - HOGAN BATCHPEM (2.5) ----------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 PROFile (Display Profile List)
 SYsin (Edit SYSIN Data Set)
 TEST SELECTION CRITERIA:

 Initial Script ===>
 Post Script ===>

 PARM String ===>

 HOGAN SYSIN Data Set ===>

 HOGAN PEM Driver ===> BATCHPEM ("BATCHPEM" is Default for This Test)

 File List/JCL Member ===>

 Code Coverage Test? ===> NO
 Is This a DB2 Test? ===> NO Plan ===> System ===>

 Press ENTER to process or enter END command to terminate

EDIT ----- AXPTSO.XPEDITER.SYSINDS(HOGSYS01) - 01.00 ---------- COLUMNS 001 072
COMMAND ===> SCROLL ===> PAGE

****** *************************** TOP OF DATA *******************************
000001 1 49 904
000002 #905¬704¬1%
****** ************************** BOTTOM OF DATA *****************************

XPEDITER/TSO Environment Test Screens B-19
File List/JCL Member

Enter the dataset name that contains the file list, CLIST, or JCL. The File Allocation
Utility (FAU) preallocates files and databases that are processed by the program upon
entry to the debugging session. Any files or databases that are not dynamically
allocated by Hogan must be allocated through this file.

If the member name of a PDS is omitted, a member list is displayed.

If the dataset contains a CLIST, XPEDITER/TSO immediately executes it and begins
the debugging session.

If the dataset contains a file list or JCL, the FAU is invoked to dynamically allocate
the specified files before beginning the debugging session. Refer to Appendix A,
“Using the File Allocation Utility” for detailed information about the FAU.

Note: All CDMF files and databases should be allocated.

Code Coverage Test?

Enter YES if XPEDITER/Code Coverage data should be collected for this test. The
default value is NO.

Note: The Code Coverage option is only available if you have purchased
XPEDITER/Code Coverage.

Is This a DB2 Test?

Enter YES if the program executes EXEC SQL statements. The default value is NO.

Plan

Enter the DB2 plan name generated during the bind process if the program executes
EXEC SQL statements.

System

Enter the DB2 subsystem name. The subsystem name depends on the release level of
DB2 and is assigned at the time of installation.

Press Enter to initiate the debugging session. Refer to Chapter 5, “Debugging
Interactively” for information on how to debug your program.

Hogan DLIPEM Test Screen – Environments Menu -
Option 6

The Hogan DLIPEM screen, shown in Figure B-14, lets you specify the Hogan DLIPEM
environment parameters and initiate a debugging session. Batch programs that run under
the Hogan umbrella and issue IMS/DB calls can be executed in this environment.

B-20 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure B-14. Hogan DLIPEM Screen

The fields on the Hogan DLIPEM screen are:

Initial Script

Enter the member name of a test script if you want to execute a predefined command
stream at the beginning of the debugging session. This member will be executed after
the inclusion of the Site-wide script member @@SITE@@, if defined.

Post Script

Enter the member name of a test script if you want to execute a predefined command
stream at the end of the debugging session.

PSB

The program specification block (PSB) associated with the program you are
debugging.

Program Type

Required. Default values are prefilled for this field. Indicates the kind of IMS
program you are debugging with IMS under XPEDITER/TSO. This field can have one
of the following values:

Hogan SYSIN Data Set

A control file used by Hogan programs. Enter SYSIN on the command line to edit or
create the SYSIN dataset, as shown in Figure B-15.

DLI A DL/I program is processed in an offline DL/I batch processing region
using PSB and DBD libraries if your program is not connected to the IMS
control region and does not use an ACB library,

BMP A BMP program is manually scheduled by the system operator and,
typically, processes some data that was held by IMS in a message queue if
your program is connected to the IMS control region.

DBB A DBB program is processed in an offline DL/I batch processing region
using ACB libraries instead of PSB and DBD libraries if your program is not
connected to the IMS control region and uses an ACB library.

 Profile: DEFAULT ---- XPEDITER/TSO - HOGAN DLIPEM (2.6) ---------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 PROFile (Display Profile List)
 SYsin (Edit SYSIN Data Set)
 TEST SELECTION CRITERIA:

 Initial Script ===>
 Post Script ===>
 PSB ===>

 Program Type ===> DLI (DLI, BMP, DBB)

 HOGAN SYSIN Data Set ===>
 HOGAN PEM Driver ===> DLIPEM ("DLIPEM" is Default for DLI Program)

 File List/JCL Member ===>

 Code Coverage Test? ===> NO
 Is This a DB2 Test? ===> NO Plan ===> System ===>

 Press ENTER to process or enter END command to terminate

XPEDITER/TSO Environment Test Screens B-21
Figure B-15. Displaying the SYSIN Dataset

Hogan PEM Driver

The name of the Hogan driver. DLIPEM is the default Hogan driver for DL/I or DBB
programs. BMPPEM is the default for BMP programs.

File List/JCL Member

Enter the dataset name that contains the file list, CLIST, or JCL. The File Allocation
Utility (FAU) preallocates files and databases that are processed by the program upon
entry to the debugging session. Any files or databases that are not dynamically
allocated by Hogan must be allocated through this file.

If the member name of a PDS is omitted, a member list is displayed.

If the dataset contains a CLIST, XPEDITER/TSO immediately executes it and begins
the debugging session.

If the dataset contains a file list or JCL, the FAU is invoked to dynamically allocate
the specified files before beginning the debugging session. Refer to Appendix A,
“Using the File Allocation Utility” for detailed information about the FAU.

Code Coverage Test?

Enter YES if XPEDITER/Code Coverage data should be collected for this test. The
default value is NO.

Note: The Code Coverage option is only available if you have purchased
XPEDITER/Code Coverage.

Is This a DB2 Test?

Enter YES if the program executes EXEC SQL statements. The default value is NO.

Plan

Enter the DB2 plan name generated during the bind process if the program executes
EXEC SQL statements. If omitted, the plan name defaults to the name specified in
the Program field.

System

Enter the DB2 subsystem name. The subsystem name depends on the release level of
DB2 and is assigned at the time of installation.

Press Enter to initiate the debugging session. Refer to Chapter 5, “Debugging
Interactively” for information on how to debug your program.

Hogan IMSPEM Test Screen – Environments Menu -
Option 7

The Hogan IMSPEM screen, displayed in Figure B-16, lets you specify debug parameters
before beginning execution of a program in a Hogan IMSPEM environment.

EDIT ----- AXPTSO.XPEDITER.SYSINDS(HOGSYS01) - 01.00 ---------- COLUMNS 001 072
COMMAND ===> SCROLL ===> PAGE

****** *************************** TOP OF DATA *******************************
000001 1 49 904
000002 #905¬704¬1%
****** ************************** BOTTOM OF DATA *****************************

B-22 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure B-16. Hogan IMSPEM Screen

The fields on the Hogan IMSPEM screen are:

PROGRAM

This field is required if TRANCODE is not specified. Used to identify which
programs are to be debugged by XPEDITER/TSO. You can enter the load module
name in this field, the transaction code in the TRANCODE field, or supply values for
both fields. If you enter only the program name, all the transactions associated with
that program are intercepted by XPEDITER/TSO. If you enter only a transaction code,
its associated program is invoked.

Three programs or transaction codes can be specified on the Hogan IMSPEM screen.
If you want to continue the list, you can scroll down to a second Hogan IMSPEM
screen, shown in Figure B-17 on page B-23. The last entry on the previous page is
displayed in the top row. Once the second screen is full, you can scroll down to a
third screen. Notice that on the second (and subsequent screens), the UP command is
available in addition to the DOWN command.

Note: XPEDITER/TSO processes every intercept specified on the panel and there is a
memory overhead associated with each program specified.

 Profile: DEFAULT ---- XPEDITER/TSO - HOGAN IMSPEM (2.7) ---------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 BTsin (Display BTSIN Menu)
 PROFile (Display Profile List) DOwn (Scroll Down)
 INTERCEPTS

 PROGRAM TRANCODE INITSCR POSTSCR START MAX
 ===> PQ4CODEL ===> TQ4COCNG ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>

 BTSIN ===> 'ASJUSR1.INCLUDE(BTSIN)'
 Program Type ===> DLI (DLI, BMP, DBB)

 HOGAN PEM Driver ===> IMSPEM ("IMSPEM" is Default for DLI Program)

 File List/JCL Member ===>

 Code Coverage Test? ===> NO Test Unattended? ===> NO
 Is This a DB2 Test? ===> NO System ===>

 Press ENTER to process or enter END command to terminate

XPEDITER/TSO Environment Test Screens B-23
Figure B-17. Hogan IMSPEM Screen 2

TRANCODE

Required if PROGRAM is not specified. Used to identify which transactions are to
be debugged by XPEDITER/TSO. You can enter the transaction code in this field, the
load module name in the PROGRAM field, or enter values for both fields.

Each transaction code must be unique. If you enter only a transaction code, its
associated program is invoked. However, multiple transactions can invoke the same
program. Therefore, if you enter only the program name, all the transactions
associated with that program are intercepted and debugged by XPEDITER/TSO.

INITSCR

Enter the member name of a test script if you want to execute a predefined command
stream at the beginning of the debugging session. This member will be executed after
the inclusion of the Site-wide script member @@SITE@@, if defined.

POSTSCR

Enter the member name of a test script if you want to execute a predefined command
stream at the end of the debugging session.

START

Enter up to four digits to specify on which occurrence of the program invocation the
intercept is to begin. By default, program intercept begins on the first occurrence.
When the program is intercepted, the debugging session is initiated and the source is
displayed.

MAX

Enter up to four digits to specify the maximum number of times the program
intercept is processed. If this field is left blank, the value defaults to an infinite
number. If you enter EXIT and there are still intercepts remaining, those intercepts
are ignored.

BTSIN

Required. XPEDITER/TSO scans the BTSIN dataset and searches for the program and
transaction code to be debugged. An intercept is established for each one found. The
BTSIN dataset must be either a sequential dataset or a member of a partitioned
dataset. The BTSIN cards should not be modified.

 Profile: DEFAULT ---- XPEDITER/TSO - HOGAN IMSPEM (2.7) ---------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 BTsin (Display BTSIN Menu)
 PROFile (Display Profile List) UP (Scroll Up) DOwn (Scroll Down)
 INTERCEPTS

 PROGRAM TRANCODE INITSCR POSTSCR START MAX
 ===> PQ4CODEL ===> TQ4COCNG ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>

 Press ENTER to process or enter END command to terminate

B-24 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Entering BTSIN on the command line of the HOGAN IMSPEM screen displays a list of
transactions (./T cards) in the BTSIN file shown in Figure B-18. You can enter the S
(Select) line command next to the transaction you want to debug and return to the
Hogan IMSPEM screen. The selected transactions are automatically filled in for the
appropriate fields.

Figure B-18. BTS Transaction/Program Menu

Program Type

Required. Enter the type of IMS program. It is generally the first parameter value
passed to IMS in the JCL. This field can have one of the following values:

Note: These program types are retrieved from PARM lists in the Setup option. Your
specific site options determine which program types are available on the
screen.

Hogan PEM Driver

Enter the name of the Hogan PEM driver. IMSPEM is the default Hogan PEM driver
for BTS testing.

File List/JCL Member

Enter the dataset name that contains the file list, CLIST, or JCL. The File Allocation
Utility (FAU) preallocates files and databases that are processed by the program upon
entry to the debugging session.

If the member name of a PDS is omitted, a member list is displayed.

If the dataset contains a CLIST, XPEDITER/IMS immediately executes it and begins
the debugging session.

If the dataset contains a file list or JCL, the FAU is invoked to dynamically allocate
the specified files before beginning the debugging session. Refer to Appendix A,
“Using the File Allocation Utility” for detailed information about the FAU.

MPP An MPP program is automatically loaded by IMS when a message to be
processed by that program is received. The scheduling of MPP programs is
entirely under the control of IMS.

BMP A BMP program is manually scheduled by the system operator and,
typically, processes some data that was held by IMS in a message queue.

DBB A DBB program is processed in an offline DL/I batch processing region
using ACB libraries instead of PDB and DBD libraries.

DLI A DL/I program is processed in an offline DL/I batch processing region
using PSB and DBD libraries.

Profile: DEFAULT ----- BTS TRANSACTION/PROGRAM MENU ------------ ROW 9 OF 19
COMMAND ===>

 Select Any Transactions/Programs To Be Tested With XPEDITER

 Enter END Command To Return To The Previous Menu

SELECT -------------- ./T CARDS FROM BTSIN DATA SET --------------------
 TC=TQ4CNINQ MBR=PQ4CNINQ PSB=PQ4CNINQ LANG=CBL TYPE=MSG
 TC=TQ4COINQ MBR=PQ4COINQ
 TC=TQ4COINQ MBR=PQ4COINQ PSB=PE4COINQ LANG=CBL TYPE=MSG
 TC=TQ4CONEW MBR=PQ4CORDR PSB=PE4CORDR LANG=CBL TYPE=MSG SPA=1300
 TC=TQ4CODEL MBR=PQ4CODEL PSB=PE4CODEL LANG=CBL TYPE=MSG SPA=1300
 TC=TQ4COCNG MBR=PQ4CODEL PSB=PE4CODEL LANG=CBL TYPE=MSG SPA=1300
****************************** BOTTOM OF DATA ****************************

XPEDITER/TSO Environment Test Screens B-25
Note: To allocate a dataset to a BTS ddname, enter SETUP on the command line of
the Hogan IMSPEM screen and then select option B on the Setup Menu. The
BTS Test Setup Options screen is displayed. You can enter/verify the installed
defaults for any BTS ddnames listed on the Setup Menu. Refer to “BTS Setup
Menu” on page C-25 for more information.

Code Coverage Test?

Enter YES if XPEDITER/Code Coverage data should be collected for this test. The
default value is NO.

Note: The Code Coverage option is only available if you have purchased
XPEDITER/Code Coverage.

Test Unattended?

Enter YES in the ’Test Unattended?’ field to run in Unattended mode. The default
value is NO. In unattended mode, after BTS gives control to the application program,
only XPEDITER commands are processed in the Initial Script, the Post Script, and the
Abend Script. Interactive XPEDITER commands are not permitted (from the
terminal).

Is This a DB2 Test?

Enter YES if the program executes EXEC SQL statements. The default value is NO.

System

Enter the DB2 subsystem name if the program executes EXEC SQL statements. The
subsystem name depends on the release level of DB2 assigned to the DSNLOAD
library specified at installation time.

Press Enter to initiate the debugging session. Refer to Chapter 5, “Debugging
Interactively” for information on how to debug your program.

MPP Test Screen – Environments Menu - Option 8
The MPP Test screen displayed in Figure B-19 on page B-26 lets you set up environment
parameters before beginning program execution of a program in an IMS message region.
When you identify the transactions to be debugged and initiate a session, XPEDITER/IMS
attaches the IMS message region within the TSO address space. You can enter the
transaction code from an IMS terminal to start the transaction, and the source will be
displayed on the TSO terminal where the debugging session was initiated. The operation
of the product requires one logical TSO terminal and one logical IMS terminal (can be an
ATM terminal), both on the same CPU.

B-26 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure B-19. MPP Test Screen

The fields on the MPP Test screen are:

PROGRAM

Required if TRANCODE is not specified. Used to identify which programs are to be
debugged by XPEDITER/IMS. You can enter the load module name in this field, the
transaction code in the TRANCODE field, or supply values for both fields. If you
enter only the program name, all the transactions associated with that program will
be intercepted by XPEDITER/IMS. If you enter only a transaction code, its associated
program is intercepted.

Three programs or transaction codes can be specified on the MPP screen. If you want
to continue the list, you can scroll down to a second MPP Test screen, shown in
Figure B-20. The last entry on the previous page is displayed in the top row. Once the
second screen is full, you can scroll down to a third screen. Notice that on the second
(and subsequent screens), the UP command is available in addition to the DOWN
command.

 Profile: DEFAULT -------- XPEDITER/TSO - MPP (2.8) -------------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 INter (Display Intercepts)
 PROFile (Display Profile List) DOwn (Scroll Down)

 INTERCEPTS Row 1 of 3

 PROGRAM TRANCODE INITSCR POSTSCR START MAX ------------ DATA ------------
> TRIMPP
> XPEDTRAN
>

 IMS USERID ===> PFHABC0 Retain Breakpoints? ===> NO

 NBA ===> 0 (Normal Buffer Allocation)
 OBA ===> 0 (Overflow Buffer Allocation)

 File List/JCL Member ===>
 Code Coverage Test? ===> NO Test Unattended? ===> NO
 Is This a DB2 Test? ===> NO System ===>

 Press ENTER to process or enter END command to terminate

XPEDITER/TSO Environment Test Screens B-27
Figure B-20. MPP Test Screen 2

TRANCODE

Used to identify which transactions are to be debugged by XPEDITER/IMS. You can
enter the transaction code in this field, the load module name in the PROGRAM
field, or supply values for both fields.

This field is required if PROGRAM is not specified or if multiple transactions are
associated with the program.

INITSCR

Enter the member name of a test script if you want to execute a predefined command
stream at the beginning of the debugging session. This member will be executed after
the inclusion of the Site-wide script member @@SITE@@, if defined.

POSTSCR

Enter the member name of a test script if you want to execute a predefined command
stream at the end of the debugging session.

START

Enter up to four digits to specify on which occurrence of the program invocation the
intercept is to begin. By default, program intercept begins on the first occurrence.
When the program is intercepted, the debugging session is initiated and the source is
displayed.

MAX

Enter up to four digits to specify the maximum number of times the program
intercept is processed. If this field is left blank, the value defaults to an infinite
number. If you enter an EXIT command and there are still intercepts remaining,
those intercepts are ignored.

DATA

Specify up to 30 bytes of data from the IMS transaction you want to debug.

The DATA field is only active if IMS User ID/Data Value Intercept Support is enabled.
See the XPEDITER/TSO and XPEDITER/IMS Installation Guide for more details.

Note: This field cannot contain the , (comma) or ¢ (cent) characters.

 Profile: DEFAULT --------- XPEDITER/TSO - MPP (2.8) -------------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 INter (Display Intercepts)
 PROFile (Display Profile List) UP (Scroll Up) DOwn (Scroll Down)

 INTERCEPTS Row 1 of 11

 PROGRAM TRANCODE INITSCR POSTSCR START MAX ------------ DATA ------------
> TRIMPP
> XPEDTRAN
>
>
>
>
>
>
>
>
>

 Press ENTER to process or enter END command to terminate

B-28 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
IMS USERID

Specify the ID of the IMS user issuing the IMS transaction you want to debug. If IMS
User ID/Data Value Intercept Support is enabled, you can enter an asterisk (*) to
specify a generic match on any user ID.

The IMS USERID field is only active if either IMS User ID Support or IMS User
ID/Data Value Intercept Support is enabled. See the XPEDITER/TSO and XPEDITER/IMS
Installation Guide for more details.

Note: If XPEDITER/Code Coverage is active, this field is also used to record the IMS
user ID in the Code Coverage Repository. If an asterisk is specified, the TSO
user ID will be recorded.

Retain Breakpoints?

If you want XPEDITER to retain breakpoints from one iteration of an IMS program or
transaction to the next, enter YES in this field. Before breakpoints, after breakpoints,
counts, skips, traces, and when conditions from the previous test iteration will be
reapplied. Count values will accumulate across iterations, but maximum execution
count limits are not preserved. Keeps and inserted lines are not retained.

The default is NO and will result in each iteration starting with only the standard
before and after breakpoints.

XPEDITER/Code Coverage counters and breakpoints, where applicable, are
unaffected by this feature.

NBA

Enter the Normal Buffer Allocation (NBA), up to two digits. The default value is 0.

OBA

Enter the Overflow Buffer Allocation (OBA), up to two digits. The default value is 0.

Note: The NBA and OBA fields appear on the screen only if your site installer
indicated that your site uses Fast Path databases. The values are inserted in
the PARM string when the IMS region is attached.

File List/JCL Member

Enter the dataset name that contains the file list, CLIST, or JCL. The File Allocation
Utility (FAU) preallocates files and databases that are processed by the program upon
entry to the debugging session.

If the member name of a PDS is omitted, a member list is displayed.

If the dataset contains a CLIST, XPEDITER/IMS immediately executes it and begins
the debugging session.

If the dataset contains a file list or JCL, the FAU is invoked to dynamically allocate
the specified files before beginning the debugging session. Refer to Appendix A,
“Using the File Allocation Utility” for detailed information about the FAU.

Code Coverage Test?

Enter YES if XPEDITER/Code Coverage data should be collected for this test. The
default value is NO.

Note: The Code Coverage option is only available if you have purchased
XPEDITER/Code Coverage.

Test Unattended?

Enter YES in the ’Test Unattended?’ field to run in Unattended mode. The default
value is NO. In unattended mode, after the XPEDITER/IMS Message Processing
Region (MPR) is attached, only XPEDITER commands are processed in the Initial

XPEDITER/TSO Environment Test Screens B-29
Script, Post Script, and Abend Script. The TSO terminal remains locked and
XPEDITER commands are not allowed from the terminal. When you are finished
testing in the XPEDITER/IMS MPR, the MPR may be stopped and the TSO terminal
unlocked by using either the XPEDITER Stop Region transaction, XPST, or the
XPEDITER Stop Region BMP procedure XPSTOP. Refer to “Stopping the
XPEDITER/IMS Dependent Region” on page 7-13.

Is This a DB2 Test?

Enter YES if the program executes EXEC SQL statements. The default value is NO.

System

Enter the DB2 subsystem name if the program executes EXEC SQL statements. The
subsystem name depends on the release level of DB2 and is assigned at the time of
installation.

Press Enter to initiate the debugging session. Refer to Chapter 5, “Debugging
Interactively” for information on how to debug your program.

When intercepts cannot be set and the message MAX USERS is displayed on the test
screen, enter INTER on the command line to look at the Intercepts screen, shown in
Figure B-21 on page B-29. The Number of Available Class Codes field will be zero (0),
indicating that the maximum number of users are testing with XPEDITER/IMS.

The Intercepts screen provides valuable information regarding the use of
XPEDITER/IMS—how many users can still test using XPEDITER/IMS, what programs or
transactions are being tested, and other information connected with the program and the
transaction code.

Figure B-21. Intercepts Screen

The Intercepts screen does not contain any input fields; all of the information is
displayed for you. The fields on the screen are described below:

Number Of Available Class Codes

The number of class codes available. This field tells you how many more people can
run an MPP test. Notice that Figure B-21 indicates that the maximum number of MPP
users are testing with XPEDITER/IMS by displaying the number of class codes
available for use as zero (0).

Profile: DEFAULT ----------- INTERCEPTS -------------------- ROW 1 TO 14 OF 14
COMMAND ===> SCROLL ===> PAGE

 Number Of Available Class Codes: 0 Current IMSID: IMSA
 CLASS
 USERID TRAN CODE PROGRAM TYPE PSB OLD NEW IMSID
======== ========= ======== ==== ========= === === =====
ASJUSR1 XPEDTRAN XPEDTRAN TP XPEDTRAN 002 045 IMSA
ASJUSR1 XPE1 XPEDTRA1 TP XPEDTRA1 004 045 IMSA
ASJUSR1 XPE2 XPEDTRA2 TP XPEDTRA2 005 045 IMSA
ASJUSR2 XPEDBMP1 BMP XPEDPSB1 IMSA
ASJUSR3 XPE3 XPEDBMP2 BMP XPEDPSB2 IMSA
ASJUSR4 XPE4 XPEDTRA4 TP XPEDTRA4 004 016 IMSA
ASJUSR5 XPE5 XPEDTRA5 TP XPEDTRA5 004 018 IMSA
ASJUSR6 XFP1 XPEDFP1 IFP FASTPAT1 001 IMSA
ASJUSR7 XFP2 XPEDFP2 IFP FASTPAT2 001 IMSA
ASJUSR8 XPEDBMP3 BMP XPEDBMP IMSA
ASJUSR9 XPE6 XPEDTRA6 TP XPEDTRA6 004 019 IMSA
ASJUSR9 XPE7 XPEDTRA7 TP XPEDTRA7 005 019 IMSA
ASJUSR9 XPE8 XPEDTRA8 TP XPEDTRA8 005 019 IMSA
ASJUSR10 XPEDBMP4 BMP XPEDPSB2 IMSA

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

B-30 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Current IMSID

The name of the IMS control region with which the current user communicates.

USERID

The user ID of the person running the test.

TRAN CODE

The transaction code associated with the program, if one was used.

PROGRAM

The name of the program being tested.

TYPE

The type of program being tested.

PSB

The program specification block (PSB) name associated with the program. Often, this
name is the same as the program name.

OLD CLASS

The original class code of the user’s transaction.

NEW CLASS

The XPEDITER/IMS reserved class code for the transaction. XPEDITER/IMS reassigns
the class codes for message processing transactions.

IMSID

The name of the IMS control region with which the IMS user programs
communicate. This name does not have to be the current IMSID.

BMP/IFP Test Screen – Environments Menu - Option 9
The BMP/IFP screen displayed in Figure B-22 lets you set up debug parameters before
beginning program execution of a program in an IMS, BMP, or Fast Path Region. When
you identify the transactions to be debugged and initiate a session, XPEDITER/IMS
attaches the IMS message region within the TSO address space. You can enter the
transaction code from an IMS terminal to start the transaction, and the source will be
displayed on the TSO terminal where the debugging session was initiated. The operation
of the product requires one logical TSO terminal and one logical IMS terminal (can be an
ATM terminal), both on the same CPU.

XPEDITER/TSO Environment Test Screens B-31
Figure B-22. BMP/IFP Screen

The fields on the BMP/IFP screen are:

Program

Required. Used to identify which program is to be intercepted and debugged by
XPEDITER/IMS. You must enter the load module name in this field. XPEDITER inserts
this value into the program subparameter for the parameter it passes to IMS.

PSB

Required. Enter the program specification block (PSB) associated with the program
you are debugging. XPEDITER inserts the specified value into the BMP parameter
passed to the IMS driver program.

TRAN CODE

Enter the optional IMS transaction code. The value specified is inserted into the
INPUT TRAN subparameter of the BMP parameter passed to the IMS driver program.

Initial Script

Enter the member name of a test script if you want to execute a predefined command
stream at the beginning of the debugging session. This member will be executed after
the inclusion of the Site-wide script member @@SITE@@, if defined.

Post Script

Enter the member name of a test script if you want to execute a predefined command
stream at the end of the debugging session.

NBA

Enter the Normal Buffer Allocation (NBA), up to two digits. The default value is 0.

OBA

Enter the Overflow Buffer Allocation (OBA), up to two digits. The default value is 0.

Note: The NBA and OBA fields appear on the screen only if your site installer
indicated that your site uses Fast Path databases. The values are inserted in
the PARM string when the IMS region is attached.

 Profile: DEFAULT ------- XPEDITER/TSO - BMP/IFP (2.9) -----------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 INter (Display Intercepts)
 PROFile (Display Profile List)
 TEST SELECTION CRITERIA:

 Program ===> TRIIFP
 PSB ===> TRIIFP
 TRAN CODE ===>

 Initial Script ===>
 Post Script ===>

 NBA ===> 0 (Normal Buffer Allocation)
 OBA ===> 0 (Overflow Buffer Allocation)

 File List/JCL Member ===>

 Code Coverage Test? ===> NO
 Is This a DB2 Test? ===> NO System ===>

 Press ENTER to process or enter END command to terminate

B-32 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
File List/JCL Member

Enter the dataset name that contains the file list, CLIST, or JCL. The File Allocation
Utility (FAU) preallocates files and databases that will be processed by the program
upon entry to the debugging session.

If the member name of a PDS is omitted, a member list is displayed.

If the dataset contains a CLIST, XPEDITER/IMS immediately executes it and begins
the debugging session.

If the dataset contains a file list or JCL, the FAU is invoked to dynamically allocate
the specified files before beginning the debugging session. Refer to Appendix A,
“Using the File Allocation Utility” for detailed information about the FAU.

Code Coverage Test?

Enter YES if XPEDITER/Code Coverage data should be collected for this test. The
default value is NO.

Note: The Code Coverage option is only available if you have purchased
XPEDITER/Code Coverage.

Is This a DB2 Test?

Enter YES if the program executes EXEC SQL statements. The default value is NO.

System

Enter the DB2 subsystem name if the program executes EXEC SQL statements. The
subsystem name depends on the release level of DB2 and is assigned at the time of
installation.

Press Enter to initiate the debugging session. Refer to Chapter 5, “Debugging
Interactively” for information on how to debug your program.

When intercepts cannot be set and the message MAX USERS is displayed on the test
screen, enter INTER on the command line to look at the Intercepts screen, shown in
Figure B-23 on page B-33. The Number of Available Class Codes field will be zero (0),
indicating that the maximum number of users are testing with XPEDITER/IMS.

The Intercepts screen provides valuable information regarding the use of
XPEDITER/IMS—how many users can still test using XPEDITER/IMS, what programs or
transactions are being tested, and other information connected with the program and the
transaction code.

XPEDITER/TSO Environment Test Screens B-33
Figure B-23. Intercepts Screen

The Intercepts screen does not contain any input fields; all of the information is
displayed for you. The fields on the Intercepts screen are described below:

Number Of Available Class Codes

The number of class codes available. This field tells you how many more people can
run an MPP test. Notice that Figure B-23 displays the number of class codes available
for use as zero (0), indicating that the maximum number of MPP users are testing
with XPEDITER/IMS.

Current IMSID

The name of the IMS control region with which the current user communicates.

USERID

The user ID of the person running the test.

TRAN CODE

The transaction code associated with the program, if one was used.

PROGRAM

The name of the program being tested.

TYPE

The type of program being tested.

PSB

The program specification block (PSB) name associated with the program. Often, this
name is the same as the program name.

OLD CLASS

The original class code of the user’s transaction.

NEW CLASS

The XPEDITER/IMS reserved class code for the transaction. XPEDITER/IMS reassigns
the class codes for message processing transactions.

Profile: DEFAULT ------------ INTERCEPTS ------------------- ROW 1 TO 14 OF 14
COMMAND ===> SCROLL ===> PAGE

 Number Of Available Class Codes: 0 Current IMSID: IMSA
 CLASS
 USERID TRAN CODE PROGRAM TYPE PSB OLD NEW IMSID
======== ========= ======== ==== ========= === === =====
ASJUSR1 XPEDTRAN XPEDTRAN TP XPEDTRAN 002 045 IMSA
ASJUSR1 XPE1 XPEDTRA1 TP XPEDTRA1 004 045 IMSA
ASJUSR1 XPE2 XPEDTRA2 TP XPEDTRA2 005 045 IMSA
ASJUSR2 XPEDBMP1 BMP XPEDPSB1 IMSA
ASJUSR3 XPE3 XPEDBMP2 BMP XPEDPSB2 IMSA
ASJUSR4 XPE4 XPEDTRA4 TP XPEDTRA4 004 016 IMSA
ASJUSR5 XPE5 XPEDTRA5 TP XPEDTRA5 004 018 IMSA
ASJUSR6 XFP1 XPEDFP1 IFP FASTPAT1 001 IMSA
ASJUSR7 XFP2 XPEDFP2 IFP FASTPAT2 001 IMSA
ASJUSR8 XPEDBMP3 BMP XPEDBMP IMSA
ASJUSR9 XPE6 XPEDTRA6 TP XPEDTRA6 004 019 IMSA
ASJUSR9 XPE7 XPEDTRA7 TP XPEDTRA7 005 019 IMSA
ASJUSR9 XPE8 XPEDTRA8 TP XPEDTRA8 005 019 IMSA
ASJUSR10 XPEDBMP4 BMP XPEDPSB2 IMSA

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

B-34 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
IMSID

The name of the IMS control region with which the IMS user programs
communicate. This name does not have to be the current IMSID.

Hogan IMSPEM Test Screen – Environments Menu -
Option 10

The Hogan IMSPEM screen displayed in Figure B-24 lets you set up debug parameters
before beginning program execution of Hogan IMSPEM in an IMS message region. When
you identify the transactions to be debugged and initiate a session, XPEDITER/IMS
attaches the IMS message region within the TSO address space. You can enter the
transaction code from an IMS terminal to start the transaction, and the source will be
displayed on the TSO terminal where the debugging session was initiated. The operation
of the product requires one logical TSO terminal and one logical IMS terminal (can be an
ATM terminal), both on the same CPU.

Figure B-24. Hogan IMSPEM Screen

The fields on the Hogan IMSPEM screen are:

PROGRAM

Required if TRANCODE is not specified. This field is used to identify which
programs are to be intercepted and debugged by XPEDITER/IMS. You can enter the
load module name in this field, the transaction code in the TRANCODE field, or
supply values for both fields. If you enter only the program name (as shown in Figure
B-24), all the transactions associated with that program are intercepted and debugged
by XPEDITER/IMS. If you enter only a transaction code, its associated program is
intercepted.

Three lines of intercept-related data can be specified on this screen. If you want to
continue the list, you can scroll down to a second screen, which contains only
intercept information.

The second Hogan IMSPEM test screen, shown in Figure B-25, must be filled up
before the third screen can be called. Note that on the second and subsequent
screens, the UP command is available in addition to the DOWN command. Only

 Profile: HOGAN ------ XPEDITER/TSO - HOGAN IMSPEM (2.10) --------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 INter (Display Intercepts)
 PROFile (Display Profile List) DOwn (Scroll Down)
 INTERCEPTS Row 1 of 1

 PROGRAM TRANCODE INITSCR POSTSCR START MAX
 ===> ===> TRIMPP ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>

 IMS USERID ===> MFHABC0
 NBA ===> 2 (Normal Buffer Allocation)
 OBA ===> 3 (Overflow Buffer Allocation)

 HOGAN PEM Driver ===> IMSPEM ("IMSPEM" is Default for This Test)
 File List/JCL Member ===>

 Code Coverage Test? ===> NO Test Unattended? ===> NO
 Is This a DB2 Test? ===> NO System ===>

 Press ENTER to process or enter END command to terminate

XPEDITER/TSO Environment Test Screens B-35
eleven intercepts are scrolled at a time, and the last entry on the previous page shows
at the top.

Note: XPEDITER/IMS processes every intercept specified on the panel and there is a
memory overhead associated with each program specified.

Figure B-25. Hogan IMSPEM Test Screen 2

TRANCODE

Required if PROGRAM is not specified. This field is used to identify which
transactions are to be intercepted and debugged by XPEDITER/IMS. You can enter the
transaction code in this field, the load module name in the PROGRAM field, or
supply values for both fields.

Each transaction code must be unique. If you enter only a transaction code, its
associated program is intercepted. However, multiple transactions can invoke the
same program. Therefore, if you enter only the program name, all the transactions
associated with that program are intercepted and debugged by XPEDITER/IMS.

INITSCR

Enter the member name of a test script if you want to execute a predefined command
stream at the beginning of the debugging session. You can optionally enter a member
name from a Setup INCLUDE library. This member will be executed after the
inclusion of the Site-wide script member @@SITE@@, if defined.

POSTSCR

Enter the member name of a test script if you want to execute a predefined command
stream at the end of the debugging session. You can optionally enter a member name
from a Setup INCLUDE library.

START

Enter up to four digits; the default value is 1. The start value specifies the intercept
on which processing begins. The program’s source code is displayed when the start
intercept is processed.

MAX

Enter the number of times the intercept is to remain active. If you do not supply a
MAX value, XPEDITER/IMS intercepts the transaction (or program) each time it is

 Profile: STORE ------ XPEDITER/TSO - HOGAN IMSPEM (2.10) --------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 INter (Display Intercepts)
 PROFile (Display Profile List) UP (Scroll Up) DOwn (Scroll Down)
 INTERCEPTS

 PROGRAM TRANCODE INITSCR POSTSCR START MAX
 ===> TRIHOGAN ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>

 Press ENTER to process or enter END command to terminate

B-36 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
invoked. If you enter an EXIT command and there are still intercepts remaining,
those intercepts are ignored.

IMS USERID

Specify the ID of the IMS user issuing the IMS transaction you want to debug. This
applies only if IMS user ID support is enabled. See the XPEDITER/TSO and
XPEDITER/IMS Installation Guide for more details.

This field is also used to record the user ID in the Code Coverage Repository if
XPEDITER/Code Coverage is active.

NBA

Enter the Normal Buffer Allocation (NBA), up to two digits.

OBA

Enter the Overflow Buffer Allocation (OBA), up to two digits.

Note: The NBA and OBA fields appear on the screen only if your site installer
indicated that your site uses Fast Path databases. The values are inserted in
the PARM string when the IMS region is attached.

Hogan PEM Driver

Enter the name of the Hogan driver. IMSPEM is the default.

File List/JCL Member

Enter the dataset name that contains the file list, CLIST, or JCL. The File Allocation
Utility (FAU) preallocates files and databases that will be processed by the program
upon entry to the debugging session.

If the member name of a PDS is omitted, a member list is displayed.

If the dataset contains a CLIST, XPEDITER/IMS immediately executes it and begins
the debugging session.

If the dataset contains a file list or JCL, the FAU is invoked to dynamically allocate
the specified files before beginning the debugging session. Refer to Appendix A,
“Using the File Allocation Utility” for detailed information about the FAU.

Code Coverage Test?

Enter YES if XPEDITER/Code Coverage data should be collected for this test. The
default value is NO.

Note: The Code Coverage option is only available if you have purchased
XPEDITER/Code Coverage.

Test Unattended?

Enter YES in the ’Test Unattended?’ field to run in Unattended mode. The default
value is NO. In unattended mode, after the XPEDITER/IMS Message Processing
Region (MPR) is attached, only XPEDITER commands are processed in the Initial
Script, Post Script, and Abend Script. The TSO terminal remains locked and
XPEDITER commands are not allowed from the terminal. When you are finished
testing in the XPEDITER/IMS MPR, the MPR may be stopped and the TSO terminal
unlocked by using either the XPEDITER Stop Region transaction, XPST, or the
XPEDITER Stop Region BMP procedure XPSTOP. Refer to “Stopping the
XPEDITER/IMS Dependent Region” on page 7-13.

Is This a DB2 Test?

Enter YES if the program executes EXEC SQL statements. The default value is NO.

XPEDITER/TSO Environment Test Screens B-37
System

Enter the DB2 subsystem name if the program executes EXEC SQL statements. The
subsystem name depends on the release level of DB2 and is assigned at the time of
installation.

Press Enter to initiate the debugging session. Refer to Chapter 5, “Debugging
Interactively” for information on how to debug your program.

When intercepts cannot be set and the message MAX USERS is displayed on the test
screen, enter INTER on the command line to look at the Intercepts screen, shown in
Figure B-26. The Number of Available Class Codes field will be zero (0), indicating that
the maximum number of users are testing with XPEDITER/IMS.

The Intercepts screen provides valuable information regarding the use of
XPEDITER/IMS—how many users can still test using XPEDITER/IMS, what programs or
transactions are being tested, and other information connected with the program and the
transaction code.

Figure B-26. Intercepts Screen

The Intercepts screen does not contain any input fields; all of the information is
displayed for you. The fields on the Intercepts screen are described below:

Number Of Available Class Codes

The number of class codes available. This field tells you how many more people can
run an MPP test. Notice that Figure B-26 displays the number of class codes available
for use as zero (0), indicating that the maximum number of MPP users are testing
with XPEDITER/IMS.

Current IMSID

The name of the IMS control region with which the current user communicates.

USERID

The user ID of the person running the test.

TRAN CODE

The transaction code associated with the program, if one was used.

Profile: DEFAULT ------------ INTERCEPTS ------------------- ROW 1 TO 14 OF 14
COMMAND ===> SCROLL ===> PAGE

 Number Of Available Class Codes: 0 Current IMSID: IMSA
 CLASS
 USERID TRAN CODE PROGRAM TYPE PSB OLD NEW IMSID
======== ========= ======== ==== ========= === === =====
ASJUSR1 XPEDTRAN XPEDTRAN TP XPEDTRAN 002 045 IMSA
ASJUSR1 XPE1 XPEDTRA1 TP XPEDTRA1 004 045 IMSA
ASJUSR1 XPE2 XPEDTRA2 TP XPEDTRA2 005 045 IMSA
ASJUSR2 XPEDBMP1 BMP XPEDPSB1 IMSA
ASJUSR3 XPE3 XPEDBMP2 BMP XPEDPSB2 IMSA
ASJUSR4 XPE4 XPEDTRA4 TP XPEDTRA4 004 016 IMSA
ASJUSR5 XPE5 XPEDTRA5 TP XPEDTRA5 004 018 IMSA
ASJUSR6 XFP1 XPEDFP1 IFP FASTPAT1 001 IMSA
ASJUSR7 XFP2 XPEDFP2 IFP FASTPAT2 001 IMSA
ASJUSR8 XPEDBMP3 BMP XPEDBMP IMSA
ASJUSR9 XPE6 XPEDTRA6 TP XPEDTRA6 004 019 IMSA
ASJUSR9 XPE7 XPEDTRA7 TP XPEDTRA7 005 019 IMSA
ASJUSR9 XPE8 XPEDTRA8 TP XPEDTRA8 005 019 IMSA
ASJUSR10 XPEDBMP4 BMP XPEDPSB2 IMSA

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

B-38 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
PROGRAM

The name of the program being tested.

TYPE

The type of program being tested.

PSB

The program specification block (PSB) name associated with the program. Often, this
name is the same as the program name.

OLD CLASS

The original class code of the user’s transaction.

NEW CLASS

The XPEDITER/IMS reserved class code for the transaction. XPEDITER/IMS reassigns
the class codes for message processing transactions.

IMSID

The name of the IMS control region with which the IMS user programs
communicate. This name does not have to be the current IMSID.

Hogan BMPPEM Test Screen – Environments Menu -
Option 11

The Hogan BMPPEM screen displayed in Figure B-27 lets you set up debug parameters
before beginning program execution of Hogan BMPPEM in a BMP Region.

Figure B-27. Hogan BMPPEM Screen

The fields on the Hogan BMPPEM screen are:

Initial Script

Enter the member name of a test script if you want to execute a predefined command
stream at the beginning of the debugging session. You can optionally enter a member
name from a Setup INCLUDE library. This member will be executed after the
inclusion of the Site-wide script member @@SITE@@, if defined.

 Profile: DEFAULT ---- XPEDITER/TSO - HOGAN BMPPEM (2.11) --------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 INter (Display Intercepts)
 PROFile (Display Profile List) SYsin (Edit SYSIN dataset)

 TEST SELECTION CRITERIA:
 Initial Script ===>
 Post Script ===>
 PSB ===>
 TRAN CODE ===>
 NBA ===> 0 (Normal buffer allocation)
 OBA ===> 0 (Overflow buffer allocation)

 HOGAN SYSIN Data Set ===>
 HOGAN PEM Driver ===> BMPPEM ("BMPPEM" is default for this test)

 File List/JCL Member ===>

 Code Coverage Test? ===> NO
 Is This a DB2 Test? ===> NO System ===>

 Press ENTER to process or enter END command to terminate

XPEDITER/TSO Environment Test Screens B-39
Post Script

Enter the member name of a test script if you wish to execute a predefined command
stream at the end of the debugging session. You can optionally enter a member name
from a Setup INCLUDE library.

PSB

Enter the program specification block (PSB) name associated with the program you
are debugging.

TRAN CODE

Enter the optional IMS input transaction code. This value is inserted into the IMS
PARM specified under Setup.

NBA

Enter the Normal Buffer Allocation (NBA), up to two digits. The default value is 0.

OBA

Enter the Overflow Buffer Allocation (OBA), up to two digits. The default value is 0.

Note: The NBA and OBA fields appear on the screen only if your site installer
indicated that your site uses Fast Path databases. The values are inserted in
the PARM string when the IMS region is attached.

Hogan SYSIN Data Set

A control file used by Hogan programs. Enter SYSIN on the command line to edit or
create the SYSIN dataset, as shown in Figure B-28.

Figure B-28. Displaying the SYSIN Dataset

Hogan PEM Driver

Enter the name of the Hogan driver. BMPPEM is the default.

File List/JCL Member

Enter the dataset name that contains the file list, CLIST, or JCL. The File Allocation
Utility (FAU) preallocates files and databases that are processed by the program upon
entry to the debugging session. Any files or databases that are not dynamically
allocated by Hogan must be allocated through this file.

If the member name of a PDS is omitted, a member list is displayed.

If the dataset contains a CLIST, XPEDITER/TSO immediately executes it and begins
the debugging session.

If the dataset contains a file list or JCL, the FAU is invoked to dynamically allocate
the specified files before beginning the debugging session. Refer to Appendix A,
“Using the File Allocation Utility” for detailed information about the FAU.

Note: All CDMF files and databases should be allocated.

EDIT --- AXPTSO.XPEDITER.SYSINDS(HOGSYS01) - 01.00 -------- COLUMNS 001 072
COMMAND ===> SCROLL ===> PAGE

****** *************************** TOP OF DATA ****************************
000001 1 49 904
000002 #905¬704¬1%
****** ************************** BOTTOM OF DATA **************************

B-40 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Code Coverage Test?

Enter YES if XPEDITER/Code Coverage data should be collected for this test. The
default value is NO.

Note: The Code Coverage option is only available if you have purchased
XPEDITER/Code Coverage.

Is This a DB2 Test?

Enter YES if the program executes EXEC SQL statements. The default value is NO.

System

Enter the DB2 subsystem name if the program executes EXEC SQL statements. The
subsystem name depends on the release level of DB2 and is assigned at the time of
installation.

Press Enter to initiate the debugging session. Refer to Chapter 5, “Debugging
Interactively” for information on how to debug your program.

When intercepts cannot be set and the message MAX USERS is displayed on the test
screen, enter INTER on the command line to look at the Intercepts screen, shown in
Figure B-29 on page B-40. The Number of Available Class Codes field will be zero (0),
indicating that the maximum number of users are testing with XPEDITER/IMS.

The Intercepts screen provides valuable information regarding the use of
XPEDITER/IMS—how many users can still test using XPEDITER/IMS, what programs or
transactions are being tested, and other information connected with the program and the
transaction code.

Figure B-29. Intercepts Screen

The Intercepts screen does not contain any input fields; all of the information is
displayed for your analysis. The fields on the Intercepts screen are described below:

Number Of Available Class Codes

The number of class codes available. This field tells you how many more people can
run a MPP test. Notice that Figure B-29 displays the number of class codes available
for use as zero (0), indicating that the maximum number of MPP users are testing
with XPEDITER/IMS.

Profile: DEFAULT ------------ INTERCEPTS ------------------- ROW 1 TO 14 OF 14
COMMAND ===> SCROLL ===> PAGE

 Number Of Available Class Codes: 0 Current IMSID: IMSA
 CLASS
 USERID TRAN CODE PROGRAM TYPE PSB OLD NEW IMSID
======== ========= ======== ==== ========= === === =====
ASJUSR1 XPEDTRAN XPEDTRAN TP XPEDTRAN 002 045 IMSA
ASJUSR1 XPE1 XPEDTRA1 TP XPEDTRA1 004 045 IMSA
ASJUSR1 XPE2 XPEDTRA2 TP XPEDTRA2 005 045 IMSA
ASJUSR2 XPEDBMP1 BMP XPEDPSB1 IMSA
ASJUSR3 XPE3 XPEDBMP2 BMP XPEDPSB2 IMSA
ASJUSR4 XPE4 XPEDTRA4 TP XPEDTRA4 004 016 IMSA
ASJUSR5 XPE5 XPEDTRA5 TP XPEDTRA5 004 018 IMSA
ASJUSR6 XFP1 XPEDFP1 IFP FASTPAT1 001 IMSA
ASJUSR7 XFP2 XPEDFP2 IFP FASTPAT2 001 IMSA
ASJUSR8 XPEDBMP3 BMP XPEDBMP IMSA
ASJUSR9 XPE6 XPEDTRA6 TP XPEDTRA6 004 019 IMSA
ASJUSR9 XPE7 XPEDTRA7 TP XPEDTRA7 005 019 IMSA
ASJUSR9 XPE8 XPEDTRA8 TP XPEDTRA8 005 019 IMSA
ASJUSR10 XPEDBMP4 BMP XPEDPSB2 IMSA

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

XPEDITER/TSO Environment Test Screens B-41
Current IMSID

The name of the IMS control region with which the current user communicates.

USERID

The user ID of the person running the test.

TRAN CODE

The transaction code associated with the program, if one was used.

PROGRAM

The name of the program being tested.

TYPE

The type of program being tested.

PSB

The program specification block (PSB) name associated with the program. Often, this
name is the same as the program name.

OLD CLASS

The original class code of the user’s transaction.

NEW CLASS

The XPEDITER/IMS reserved class code for the transaction. XPEDITER/IMS reassigns
the class codes for message processing transactions.

IMSID

The name of the IMS control region with which the IMS user programs
communicate. This name does not have to be the current IMSID.

DB2 Stored Procedures – Environments Menu - Option 12
The DB2 Stored Procedure screen (2.12) shown in Figure B-30 on page B-42 lets you set up
debug parameters before beginning program interception of a call to a DB2 Stored
Procedure. Establish the intercept requiest by entering the information necessary on the
DB2 Stored Procedure screen. Pressing Enter will establish the environment and prepare
XPEDITER to intercept the call to the stored procedure.

B-42 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure B-30. DB2 Stored Procedure Screen (2.12)

The fields on the DB2 Stored Procedure screen (2.12) are:

Schema Name

Used to supply the schema name associated with the stored procedure. XPEDITER
will use this name, along with the stored procedure name, to resolve the Workload
Manager (WLM) application environment and the load module name. Your site’s DB2
administrator or WLM System Support specialist should be able to provide the
schema and stored procedure names that have been defined to WLM and DB2.
Beginning with DB2 8.1, the schema name can be up to 128 bytes long.

Stored Procedure Name or UDF

Required. Used to identify the stored procedure name or User Defined Function
(UDF) to be intercepted. The stored procedure must have been defined. Beginning
with DB2 8.1, the stored procedure name can be up to 128 bytes long.

Client End UserID or PC Account Code or IP Address

Required. Enter whichever of the following is appropriate for your test:

– The ID of the user executing the client program that calls the stored procedure. If
the client is a batch job, specify the user ID assigned to the job. XPEDITER will
not trap the stored procedure if the client calling it is associated with a different
user ID.

– The TCP/IP address where a network call of the stored procedure is done. An
example would be a DB2 UDB on the PC.

– The DB2 accounting code of the PC used to execute the client program. If DB2
UDB is installed and appropriately configured on the PC, the accounting code
can be set at the DOS prompt by entering DB2SET ACCOUNT=xxxxxx where
xxxxxx is the desired code. The code is then passed to the mainframe and used to
set the trap for the stored procedure.

– An asterisk (*). This will match on anything.

DB2 Subsystem

Required. Enter the DB2 subsystem name. To define DB2 subsystems and programs,
use the SETUP option, then the DSNLOAD option.

PROFILE: DB2SP XPEDITER/TSO - DB2 Stored Procedure (2.12) ----------------
COMMAND ===>

COMMANDS: SEtup (Display Setup Menu)
 PROFile (Display Profile List)

 Schema Name ===> XT

 Stored Procedure Name
 or UDF ===> TRISPTG

 Client End UserID
 or PC Account Code
 or IP Address ===> MFHABC0
 DB2 Subsystem Name ===> D610 (D610,D701,D510)
Maximum Number of Tests ===> 1 (1 - 9999)

 Initial Script ===>
 Post Script ===>

 File List/JCL Member ===>
 Preview Files? ===> NO
 Code Coverage Test? ===> NO
 Press ENTER to process or enter END command to terminate

XPEDITER/TSO Environment Test Screens B-43
Number of Tests

Enter the number of test intercepts to perform. This field can be used to set the
number of times a stored procedures is to be intercepted.

Initial Script

Enter the member name of a test script if you want to execute a predefined command
stream at the beginning of the debugging session. This member will be executed after
the inclusion of the site-wide script member @@SITE@@, if defined.

Post Script

Enter the member name of a test script if you want to execute a predefined command
stream at the end of the debugging session.

File List/JCL Member

Enter the dataset name that contains the file list, CLIST, or JCL. The File Allocation
Utility (FAU) preallocates files and databases that will be processed by the program
upon entry to the debugging session.

If the member name of a PDS is omitted, a member list is displayed.

If the dataset contains a CLIST, XPEDITER immediately executes it and begins the
debugging session.

If the dataset contains a file list or JCL, the FAU is invoked to dynamically allocate
the specified files before beginning the debugging session. Refer to Appendix A,
“Using the File Allocation Utility” for detailed information about the FAU.

Preview Files?

Enter YES to browse or edit the content of files prior to allocation. If File-AID is
installed, its file browse (FB) and file edit (FE) functions will also be available. For
more information, see “Using the Edit File List Screens” on page A-4.

Code Coverage Test?

Enter YES if XPEDITER/Code Coverage data should be collected for this test. The
default value is NO.

Note: The Code Coverage option is only available if you have purchased
XPEDITER/Code Coverage.

Press Enter to initiate the debugging session. Refer to Chapter 5, “Debugging
Interactively” for information on how to debug your program.

B-44 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide

C-1

Appendix A.Appendix C.

CSpecifying Setup Options App C

Setup is a user initialization procedure that lets you assign values to installed options
such as: (1) application load library names, (2) DDIO file names, (3) test script library
names, and so on. These options automatically default to the installed options the first
time you access XPEDITER/TSO; however, you can override the installed options by using
the setup procedure. The options you specify are retained across debugging sessions until
you change them.

Note: At least one DDIO library is required for XPEDITER/TSO.

The setup procedure is accessed by typing SETUP or SE on the command line of any envi-
ronment test screen or any screen on which the command appears. The options dis-
played on a Setup Menu depend on the environment in which you run your program and
may vary for different environments.

For example, if you selected option 7 (IMSPEM) on the XPEDITER/TSO Environments
Menu shown in Figure C-1, the Hogan IMSPEM Environment Test screen shown in Figure
C-2 on page C-2 is displayed.

Figure C-1. XPEDITER/TSO Environments Menu

Profile: DEFAULT ----- XPEDITER/TSO - ENVIRONMENTS MENU ------------------------
OPTION ===>

 XPEDITER/TSO
 1 STANDARD - Test a program with no special environment services
 2 DIALOG - Test programs that make ISPF dialog manager calls
 3 IMS - Test a program that makes IMS/DB calls
 4 BTS - Test programs using BTS
 5 BATCHPEM - Test a program in a Hogan BATCHPEM environment
 6 DLIPEM - Test a program in a Hogan DLIPEM/BMPPEM environment
 7 IMSPEM - Test a program in a Hogan BTS IMSPEM environment

 XPEDITER/IMS
 8 MPP - Test programs in an IMS message region
 9 BMP/IFP - Test a program in a BMP or Fast Path region
 10 IMSPEM - Test Hogan IMSPEM in an IMS message region
 11 BMPPEM - Test Hogan BMPPEM in a BMP region

 DB2 STORED PROCEDURES
 12 DB2SP - Test DB2 Stored Procedure interactively

 Note: The environment highlighted is currently selected.

 Press ENTER to process or enter END command to terminate

C-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure C-2. Hogan IMSPEM Test Screen

If you enter SETUP on the environment test screen, the IMSPEM Setup Menu shown in
Figure C-3 is displayed.

Figure C-3. XPEDITER/TSO IMSPEM Setup Menu

Option 0 on all Setup Menus displays the Environments Menu. Options 1 through 7 on
the Setup menus are available for all environments and are referred to as the common
setup options. The screens for each of these seven options are described in “Common
Setup Screens” on page C-5.

Note: As a convenience, you can bypass the Setup Menus by using the SETUP command
and specifying the setup option you want. For example, SETUP 1 takes you
directly to the Load Module Libraries screen, SE A automatically cycles you
through all the setup screens, and SETUP 0.4 changes your test type to BTS.

 Profile: DEFAULT ---- XPEDITER/TSO - HOGAN IMSPEM (2.7) ---------------------
 COMMAND ===>

 COMMANDS: SEtup (Display Setup Menu)
 BTsin (Display BTSIN Menu)
 PROFile (Display Profile List) DOwn (Scroll Down)
 INTERCEPTS

 PROGRAM TRANCODE INITSCR POSTSCR START MAX
 ===> PQ4CODEL ===> TQ4COCNG ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>
 ===> ===> ===> ===> ===> ===>

 BTSIN ===> 'ASJUSR1.INCLUDE(BTSIN)'
 Program Type ===> DLI (DLI, BMP, DBB)

 HOGAN PEM Driver ===> IMSPEM ("IMSPEM" is Default for DLI Program)

 File List/JCL Member ===>

 Code Coverage Test? ===> NO Test Unattended? ===> NO
 Is This a DB2 Test? ===> NO System ===>

 Press ENTER to process or enter END command to terminate

Profile: DEFAULT --------- XPEDITER/TSO - SETUP MENU ---------------------------
OPTION ===>

 0 ENVIRONMENT - Execution environments menu
 1 LOADLIBS - Application load module libraries
 2 DDIO - DDIO files
 3 INCLUDES - Test script libraries
 4 LOG - Session log dataset disposition
 5 SCRIPT - Test script dataset disposition
 6 DSNLOAD - DB2 system names and DSNLOAD libraries
 7 PANEXEC - PANEXEC load libraries

 I IMS - IMS setup options menu
 B BTS - BTS setup options menu
 H HOGAN - HOGAN setup options menu
 C CODE COVERAGE- Code Coverage setup options
 D DOCUMENT - Document dataset disposition
 E EXTENDED - Extended Setup Menu
 A ALL - Display all of the above in succession (except 0)

 Press ENTER to process or enter END command to terminate

Specifying Setup Options C-3
This appendix shows examples of the Setup Menus, and the screens and submenus that
can be accessed from them. Since many of the Setup Menus are the same, all of the
menus are not shown.

Setup Options Available Under XPEDITER/TSO
Environments

Table C-1 shows the setup options that are available for each XPEDITER/TSO environ-
ment.

Setup Options Available Under XPEDITER/IMS
Environments

Table C-2 on page C-4 shows the setup options that are available for each XPEDITER/IMS
environment. The Setup Menu shown in Figure C-4 on page C-4 is displayed when you
select option 11 (BMPPEM) under XPEDITER/IMS on the Environments Menu and type
SETUP in the command line of the displayed environment test screen.

Refer to “Common Setup Screens” on page C-5 for a description of the first seven options
(options 1 through 7) on the Setup Menu. Refer to “IMS Setup Menu” on page C-16 for
descriptions of options 8 through 11 and refer also to “Hogan Setup Menu” on page C-35
for option H.

Table C-1. Setup Options Available for XPEDITER/TSO Environments

Setup Options
XPEDITER/TSO Environments

Standard Dialog IMS BTS BATCHPEM DLIPEM IMSPEM

LOADLIBS X X X X X X X

DDIO X X X X X X X

INCLUDES X X X X X X X

LOG X X X X X X X

SCRIPT X X X X X X X

DSNLOAD X X X X X X X

PANEXEC X X X X X X X

IMS X X X X

BTS X X

HOGAN X X X

CODE COVERAGE X X X X X X X

DOCUMENT X X X X X X X

C-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure C-4. XPEDITER/IMS BMPPEM Setup Menu

The following notes list the differences between Figure C-4 and the Setup Menu for the
different XPEDITER/IMS environments:

Notes:

1. Options 8 (MPP) and 9 (BMP/IFP) on the Environments Menu do not display option
H (HOGAN).

2. Option 10 (IMSPEM) on the Environments Menu displays a Setup Menu similar to
Figure C-4.

Profile: DEFAULT --------- XPEDITER/TSO - SETUP MENU ---------------------------
OPTION ===>

 0 ENVIRONMENT - Execution environments menu
 1 LOADLIBS - Application load module libraries
 2 DDIO - DDIO files
 3 INCLUDES - Test script libraries
 4 LOG - Session log dataset disposition
 5 SCRIPT - Test script dataset disposition
 6 DSNLOAD - DB2 system names and DSNLOAD libraries
 7 PANEXEC - PANEXEC load libraries
 8 IMS - PSB and DBD libraries
 9 PROCLIB - IMS preload list
 10 DFSRESLB - IMS authorized load libraries
 11 PARMS - IMS region ID and parameter strings

 H HOGAN - Hogan setup options menu
 C CODE COVERAGE- Code Coverage setup options
 D DOCUMENT - Document dataset disposition
 E EXTENDED - Extended Setup Menu
 A ALL - Display all of the above in succession (except 0)

 Press ENTER to process or enter END command to terminate

Table C-2. Setup Options Available for XPEDITER/IMS Environments

Setup Options
XPEDITER/IMS Environments

MPP BMP/IFP IMSPEM BMPPEM

LOADLIBS X X X X

DDIO X X X X

INCLUDES X X X X

LOG X X X X

SCRIPT X X X X

DSNLOAD X X X X

IMS X X X X

PROCLIB X X X X

DFSRESLB X X X X

PARMS X X X X

HOGAN X X

CODE COVERAGE X X X X

DOCUMENT X X X X

Specifying Setup Options C-5
Using the RESTORE Command
When you type over an installed default value on a setup screen, that default value is per-
manently updated with the new value until either a RESTORE command is executed or
another update is made to the same field.

You can use the RESTORE command to reinstate the installed defaults for a single screen
whose values have been changed or for all Setup and installation screens whose values
have been changed.

To restore installed defaults for a single setup screen, enter RESTORE on the command
line of that particular setup screen. RESTORE reinstates all installed default values for the
screen and saves them automatically. You cannot undo the RESTORE when you enter it
for a single setup screen.

To restore installed defaults globally for all setup and installation screens, enter RESTORE
on the command line of the Setup Menu screen. A confirmation screen is displayed to
remind you that the RESTORE command reinstates all installed default values for all
setup and installation screens. When the confirmation screen is displayed, press Enter to
execute the RESTORE command. If you decide to cancel the RESTORE command, enter
the END command and exit this screen without restoring the installed default values.

Common Setup Screens
If you selected option 1 (STANDARD) on the Environments Menu and entered SETUP on
the environment test screen, the Standard Setup Menu screen shown in Figure C-5 is dis-
played.

Figure C-5. Standard Setup Menu Screen

The Setup Menu is available for all execution environments. Many of the screens are
optional. The choices always displayed on the Setup Menu are 0 through 5, D, E, and A.
They are used to specify a test environment, load libraries, DDIO libraries, test script
libraries, and log, test script, and document dataset attributes. In addition, an extended
setup menu can be selected or all setup screens can be displayed in order.

The screens for each of these options are described in the following subsections.

Profile: DEFAULT --------- XPEDITER/TSO - SETUP MENU --------------------------
OPTION ===>

 0 ENVIRONMENT - Execution environments menu
 1 LOADLIBS - Load module libraries
 2 DDIO - DDIO files
 3 INCLUDES - Test script libraries
 4 LOG - Session log dataset disposition
 5 SCRIPT - Test script dataset disposition
 6 DSNLOAD - DB2 system names and DSNLOAD libraries
 7 PANEXEC - PANEXEC load libraries

 C CODE COVERAGE- Code Coverage setup options
 D DOCUMENT - Document dataset disposition
 E EXTENDED - Extended Setup Menu
 A ALL - Display all of the above in succession (except 0)

 Press ENTER to process or enter END command to terminate

C-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Load Module Libraries Screens

A load module library list is a set of partitioned datasets containing your link-edited
application programs. XPEDITER/TSO searches the list for the modules you want to call
or debug during the debugging session. The load module library containing any module
you want to intercept (i.e., set a breakpoint on) must be listed on this screen.

The Load Module Libraries screens are used to enter the dsnames of common load librar-
ies needed for most debugging sessions. Up to 32 libraries can be concatenated in this
load library list (24 on the User Library list and 8 on the Installation Library list).

The first screen you see is one of three screens. On the first one (as shown in Figure C-6),
there is room for eight user libraries and eight installation libraries.

Figure C-6. First Load Module Libraries Screen

If you need to list additional user libraries, enter DOWN or press the PF8 key. A second
screen appears. This screen lists the user libraries you have already entered and space for
eight more libraries. DOWN is still active and you can also enter UP or press the PF7 key
to return to the previous screen.

Enter DOWN to receive a third screen (Figure C-7 on page C-7), which has space for eight
additional user libraries and a list of the original installation libraries. On this third
screen, you can enter the UP command to return to the previous screen.

Profile: DEFAULT ---- XPEDITER/TSO - LOAD MODULE LIBRARIES ---------------------
COMMAND ===>
COMMANDS: DOWN (for additional User Libraries)
User Libraries: --->>> Include ALL libraries your program requires <<<---
 (Even if the library is in LINKLST, ie. COBOL or LE runtime libraries)
 (1) ===> 'ASJUSR1.TEST.LOADLIB'
 (2) ===>
 (3) ===>
 (4) ===>
 (5) ===>
 (6) ===>
 (7) ===>
 (8) ===>
Installation Libraries: (Changes made to this list override installed defaults)
 (9) ===> 'COBOL.C2V130X.COB2LIB'
 (10) ===>
 (11) ===> 'XT.SLS61.LINKLIB'
 (12) ===>
 (13) ===>
 (14) ===>
 (15) ===>
 (16) ===>

 Press ENTER to Process or Enter END Command to Terminate

Specifying Setup Options C-7
Figure C-7. Third Load Module Libraries Screen

Values for the two fields on these screens are described below.

User Libraries

You can specify up to 24 libraries. Normal concatenation rules are in effect. Libraries
specified first will be searched first, and buffer space for XPEDITER’s task library will
be determined by the first library specified.

Installation Libraries

The installer entered the DSNAMEs of common load libraries that should be allocated
to any debugging session. Usually, only COBOL subroutines and in-house utility
libraries are listed here. You can override installed default libraries by specifying new
libraries in these fields.

The application load libraries entered in the User Libraries fields are concatenated on
top of any libraries entered in these fields.

Usage Note

Even if your application programs would normally find any required Language
dependent run-time subroutines (including LE - Language Environment), without
being included in the JOBLIB/STEPLIB of the batch JCL (usually from the LINKLIST
or (E)LPA), the libraries must still be specified as part of the test session setup. This
will ensure that XPEDITER’s Task Library will be properly configured.

DDIO Files Screen

The DDIO Files screen (Figure C-8 on page C-8) is used to enter the names of your DDIO
libraries. At least one DDIO dataset is required.

Profile: DEFAULT ---- XPEDITER/TSO - LOAD MODULE LIBRARIES ---------------------
COMMAND ===>
COMMANDS: UP (for additional User Libraries)
User Libraries:
 (17) ===>
 (18) ===>
 (19) ===>
 (20) ===>
 (21) ===>
 (22) ===>
 (23) ===>
 (24) ===>
Installation Libraries: (Changes made to this list override installed defaults)
 (25) ===> 'COBOL.C2V130X.COB2LIB'
 (26) ===>
 (27) ===> 'XT.SLS61.LINKLIB'
 (28) ===>
 (29) ===>
 (30) ===>
 (31) ===>
 (32) ===>

 Press ENTER to Process or Enter END Command to Terminate

C-8 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure C-8. DDIO Files Screen

The fields on the DDIO Files screen are:

User Libraries

Some sites find it useful to create multiple DDIO libraries based on user, project, or
some other criteria. You can enter the name of your DDIO dataset in these fields.

Fill in the dataset name of the DDIO file that contains the source listing member for
your program (load module). In addition to the original DDIO dataset names, you
may also specify Shared Directory dataset names and/or LP database dataset names.

Installation Libraries

If your site has a common DDIO dataset, the installer entered its dsname in this field.
At least one library dsname is required before XPEDITER can be invoked, but up to
three libraries can be concatenated.

Test Script Libraries Screen

The test script library contains sets of XPEDITER/TSO command streams used to set up,
run, or rerun a debugging session. You can copy these command streams into a debug-
ging session with the INCLUDE command. Each script dataset must be partitioned, and is
allocated to the XINCLUDE ddname.

While you are executing or debugging your program, XPEDITER/TSO automatically gen-
erates a script of all the commands entered during the debugging session.

Profile: DEFAULT ---------- XPEDITER/TSO - DDIO FILES --------------------------
COMMAND ===>

User Libraries:

 (1) ===> 'ASJUSR1.XPEDITER.DDIO'
 (2) ===>
 (3) ===>
 (4) ===>
 (5) ===>
 (6) ===>

Installation Libraries: (Changes made to this list override installed defaults)

 (7) ===> 'AXPQA.SLS8920.DDIO'
 (8) ===>
 (9) ===>

 Press ENTER to process or enter END command to terminate

Specifying Setup Options C-9
Figure C-9. Test Script Libraries Screen

You are not required to provide the dsname of a test script library unless you specify an
Initial or Post Script on the Test Script Libraries screen (Figure C-9), or use the INCLUDE
command referencing a member not contained in a Site-wide library (specified at instal-
lation).

The fields on the Test Script Libraries screen are:

User Libraries

The user test scripts library is created by you. You can create a member by copying
the script dataset created during a debugging session.

Installation Libraries

The installer may have entered the DSN of a test script library included on the
installation tape. These sample INCLUDE scripts can be used during installation of
XPEDITER/TSO and for subsequent verification and training.

Log, Script, and Document Dataset Screens

The Log Dataset, Script Dataset, and Document Dataset screens contain the same fields,
so the fields displayed on each screen are discussed only once. When the text in this sec-
tion and the next refer to log or the log dataset, you can assume it refers also to script
and document, if any of these three screens are involved.

Although log, script, and document datasets are automatically created for every debug-
ging session, they each contain a different kind of information at the end of the debug-
ging session:

• The session log contains a record of the XPEDITER/TSO commands entered during the
debugging session and the responses to them.

• The script dataset contains each executable command entered in the debugging
session. Before the debugging session is terminated, XPEDITER/TSO lets you copy the
test script into a test script library. This predefined stream of XPEDITER/TSO
commands can then be used to set up, run, or rerun another debugging session.

• The document dataset remains empty unless used for diagnostic purposes under the
direction of XPEDITER Technical Support.

Profile: DEFAULT ----- XPEDITER/TSO - TEST SCRIPT LIBRARIES --------------------
COMMAND ===>

User Libraries:

 (1) ===>
 (2) ===>
 (3) ===>

Installation Libraries: (Changes made to this list override installed defaults)

 (4) ===> 'AXPQA.TSO.INCLUDE'
 (5) ===>
 (6) ===>

 Press ENTER to Process or Enter END Command to Terminate

C-10 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
The Log Dataset, Script Dataset, and Document Dataset screens let you display and mod-
ify the default values for the log, script, and document datasets. Default values are sup-
plied for the dsname and allocation parameters. The disposition of the log, test script,
and document datasets before and after a debugging session must be specified because a
log, test script, and document dataset are created for every session.

Figure C-10. Log/Script/Document Dataset Screen

The screen fields shown in Figure C-10 are described as follows:

Log Dataset Name

If you leave the DSNAME field blank, XPEDITER/TSO generates a log, script, or
document dataset dsname of:

– 'userid.XPLOG.mondd.Thhmmss' (for a log dataset),
– 'userid.XPSCR.mondd.Thhmmss' (for a script dataset), or
– 'userid.XPDOC.mondd.Thhmmss' (for a document dataset)

where mon is a 3-character abbreviation for the current month, dd is the date in the
month, and hhmmss is the hour, minute, and second the dataset is created.

Under Batch Connect, you must retain the LOG, SCRIPT, and DOCUMENT datasets if
you want to be able to do a Step or Checkpoint restart. To retain these datasets, you
must specify a name in the DSNAME field. Refer to “Disposition After the Test” on
page C-11 for additional requirements and “Checkpoint/Step Restart” on page 9-1 for
more information on Checkpoint/Step restart.

Allocation Parameters

The log, script, and document datasets are created for each debugging session. Values
for the Space Units, Primary, and Secondary fields are required. Valid default
values for allocation of a log, script, or document dataset are as follows:

Data Class If required, enter the data class name defined by your site that con-
tains the dataset attributes related to the allocation of the dataset.
A data class is displayed only when SMS (Storage Management Sub-
system) is being used.

Space Units Valid values are TRK, CYL, or a block size (1-32760).

Primary Valid values are 0-32760.

-------------------------- XPEDITER/TSO - LOG DATASET --------------------------
COMMAND ===>

Log Dataset Name: (DSNAME will be generated if blank)
 DSNAME ===>

Allocation Parameters: Process Options: A (Append)
 Data Class ===> D (Delete)
 Space Units ===> TRK K (Keep)
 Primary ===> 2 PD (Print-Delete)
 Secondary ===> 2 PK (Print-Keep)
 Storage Class ===> ? (Prompt)
 Unit ===>
 Volume ===>

Disposition After the Test:
 Process Option ===> K (D, K, PD, PK, or ?)

Disposition Before the Test:
 Process Option ===> ? (A, D, or ? Used only if DSNAME is specified)

 Press ENTER to process or enter END command to terminate

Specifying Setup Options C-11
The log, script, and document datasets remain open throughout the current session.
If you modify the above parameters after these datasets have been allocated, the new
values take effect the next time you begin a debugging session.

Disposition After the Test

A value is required for Process Option. The action specified is taken when you END
from the test screen.

Under Batch Connect, you must retain the LOG, SCRIPT, and DOCUMENT datasets if
you want to be able to do a Step or Checkpoint restart. Use either the K or PK process
option to retain the dataset. Refer to “Log Dataset Name” on page C-10 for additional
requirements and “Checkpoint/Step Restart” on page 9-1 for more information on
Checkpoint/Step restart.

Specify any of the following process options to indicate the disposition of the log,
script, or document dataset after the debugging session:

Disposition Before the Test

A value for Process Option is required only if a DSNAME is specified. Use any of the
following process options to indicate the disposition of an existing log, script, or
document dataset before the debugging session begins:

Secondary Valid values are 0-32760.

Storage Class If required, enter the storage class name defined by your site that
contains the dataset attributes related to the storage occupied by
the dataset. A storage class is displayed only when SMS (Storage
Management Subsystem) is being used.

Unit Enter the unit if required at your site. Otherwise, leave blank for
defaults.

Volume Enter the volume if required at your site. Otherwise, leave blank for
defaults.

D Delete the dataset without printing it. (Under Batch Connect, the dataset is
automatically printed, then deleted.)

K Keep the dataset without printing it.

PD Print and delete the dataset.

PK Print and keep the dataset.

? You will be prompted to select a process option each time you exit the test
screen. For more information, see “Data Set Disposition Screen After a Test”
on page C-12.

Under Batch Connect, the dataset is automatically printed. If a name was
specified in the DSNAME field, the dataset is then saved with that name. If no
name was specified, the dataset is then deleted.

A Append the new dataset to the end of the old dataset.

D Delete the old dataset and reuse the same DSNAME.

C-12 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure C-11. Data Set Disposition Screen Displayed Before the Debugging Session Begins

Data Set Disposition Screen After a Test

XPEDITER displays the Data Set Disposition screen shown below in Figure C-12 after you
END from the test screen so you can select a disposition process option. The dataset’s
dsname and the ddname to which it is allocated are prefilled on this screen.

? Displays the Data Set Disposition screen shown in Figure C-11 before the
beginning of a debugging session so you can specify whether to append
(option A) the new dataset to the end of the existing log, script, or document
dataset or to delete (option D) the existing dataset before creating the log,
script, or document dataset for this debugging session.

Note: Attempting to allocate a dataset with the same name as an existing
dataset causes a file allocation error. This Data Set Disposition screen
lets you specify what to do when that situation occurs.

The DDNAME field on the Data Set Disposition screen contains the ddname
to which this dataset is about to be allocated. For example, the log dataset is
always allocated to the XPOUT ddname. The dsname you entered on the pre-
vious screen is prefilled in the DSNAME field.

Under Batch Connect, if the dataset does not exist, a step is added to your
converted JCL to allocate it with DISP=(MOD,CATLG,CATLG) without dis-
playing the Data Set Disposition screen. If the dataset already exists, you
must enter option A or D. If option A is specified, a step is added to your
converted JCL to allocate the dataset with DISP=(MOD,KEEP,KEEP). If option
D is specified, two allocation steps are added to your converted JCL, the first
with DISP=(OLD,DELETE,DELETE), the second with
DISP=(MOD,CATLG,CATLG).

---------------------- XPEDITER/TSO - DATA SET DISPOSITION ---------------------
COMMAND ===>

DATA SET DISPOSITION:
 Process Option ===> Valid Options: A (Append new data to end of file)
 D (Delete old data set and reuse)

 DDNAME: XPOUT
 DSNAME: 'ASJUSR1.LOG.TEST'

 The above file was to be allocated as a new output file, but it already exists.

 Press ENTER to Process or Enter END Command to Terminate

Specifying Setup Options C-13
Figure C-12. Data Set Disposition Screen Displayed After the Debugging Session is Ended

The fields on the screen shown in Figure C-12 are:

Process Option

Any of the following process options can be specified:

Under Batch Connect, you must retain the LOG, SCRIPT, and DOCUMENT datasets if you
want to be able to do a Step or Checkpoint restart. Use either the K or PK process option
to retain the dataset. Refer to “Log Dataset Name” on page C-10 for additional require-
ments and “Checkpoint/Step Restart” on page 9-1 for more information on Check-
point/Step restart.

B Browse the log, script, or document dataset.

C Copy the log, script, or document dataset to the partitioned dataset named
in the DSNAME field. The PDS member name must be entered in the Member
Name field.

D Delete the log, script, or document dataset without printing it.

E Display the log, script, or document dataset so you can edit it before copying
it to another dataset.

K Keep the log, script, or document dataset without printing it. The file is
saved as a sequential dataset by the same name.

M Move the log, script, or document dataset to the partitioned dataset named
in the DSNAME field. The PDS member name must be entered in the Member
Name field.

PD Print and delete the log, script, or document dataset.

PK Print and keep the log, script, or document dataset.

R Rename a sequential dataset and enter its new name in the DSNAME field.
No member name is required because only a sequential dataset can be speci-
fied for the Rename option.

---------------------- XPEDITER/TSO - DATA SET DISPOSITION ---------------------
COMMAND ===>

 DDNAME: XPOUT
 DSNAME: 'ASJUSR1.LOG.TEST'

 DATA SET DISPOSITION: VALID PROCESS OPTIONS: B (Browse) K (Keep)
 Process Option ===> D C (Copy) M (Move)
 SYSOUT Class ===> A D (Delete) PD (Print-Delete)
 Local Printer ID ===> XEROX01 E (Edit) PK (Print-Keep)
 R (Rename)
 For Process Options C, M, or R:
 DSNAME ===>
 Member Name ===>

 JOB CARD INFORMATION: (Required for system printer)
 ----*----1----*----2----*----3----*----4----*----5----*----6----*----7--
 //ASJUSR1Y JOB (ASJUSR1),'SUE',CLASS=A,MSGCLASS=Z
 //*
 //*
 //*

 Press ENTER to Process or Enter END Command to Terminate

C-14 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
SYSOUT Class

A default SYSOUT class can be entered for XPEDITER/TSO datasets. If specified, it is
used when process option PD (print and delete) or PK (print and keep) is entered. The
SYSOUT class can be A-Z, 0-9, or *.

If the SYSOUT class is to be used to direct printing to the appropriate output device,
JOB CARD INFORMATION must also be specified.

Local Printer ID

A default local printer ID can be specified for the XPEDITER/TSO dataset. If specified,
it is used when process option PD (print and delete) or PK (print and keep) is
selected. The local printer ID is the name your installation assigned to a local IBM
328x printer (for example, XEROX01, as shown in Figure C-12 on page C-13). For
local printing, the TSO command processor DSPRINT must be installed on the Local
Printer Support installation screen.

DSNAME

Required for process options C, M, and R. Enter the name of the partitioned dataset
into which the log, script, or document dataset is to be copied, moved, or renamed.

Member Name

Required for process options C and M. Enter the name of the PDS member.

JOB CARD INFORMATION

Required if SYSOUT Class is specified. Enter up to four default job statements to
submit a background job to print the log, script, or document dataset when the
current debugging session ends.

DB2 System Name and DSNLOAD Libraries Screen

Establishing the connection to DB2 requires a DB2 system ID and access to the DB2 pro-
grams that reside in the DSNLOAD dataset that was created when DB2 was installed. The
DB2 system name can be defaulted, and the DSNLOAD dataset(s) can be placed in the
installation LPALIB or LINKLIST. The DB2 System Name and DSNLOAD screen is used to
define required or additional DB2 system IDs and DSNLOAD datasets for access to DB2.

Access to multiple DB2 systems and multiple DSNLOAD datasets is controlled by the
entries on this screen. If your site defined a default DB2 system ID and the DB2 DSN-
LOAD dataset is permanently allocated when XPEDITER/TSO is activated, then this
screen can be left blank.

Specifying Setup Options C-15
Figure C-13. DSNLOAD LIbraries Screen

The fields on the DSNLOAD Libraries screen (Figure C-13) are described below:

NAME

Defines DB2 system ID names that can be used at your site to connect to a DB2
system. DSNLOAD datasets can also be associated with the DB2 system IDs on this
screen. If you use more than one DB2 system, then each should be defined on this
screen.

For standard debugging sessions, specify a specific DB2 system ID to be used when
activating DB2. This value becomes the system parameter option for the DSN
command, and the associated DSNLOAD datasets are included in XTASKLIB.

For dialog debugging sessions, the DSNLOAD datasets are included in XTASKLIB, but
you must issue the DSN if it is required.

For IMS and BTS debugging sessions, the DSNLOAD datasets are allocated to DFSESL,
as well as XTASKLIB. IMS also connects through the IMS/DB2 interface module
DSNMTV01.

DSNLOAD DSNAME

Associates the DB2 system ID name with the DSNLOAD datasets. For each name, one
or more DSNLOAD datasets can be defined. The following example shows four
possible DB2 connections with various DSNLOAD dataset combinations:

 NAME DSNLOAD DSNAME
(1) ===> DSNX ===> 'DSNX.LOADLIB'
(2) ===> DSNX ===> 'DSNX.RUNLIB'
(3) ===> DSNY ===>
(4) ===> DSNZ ===> 'DSNZ.LOADLIB'
(5) ===> ===> 'DSNY.LOADLIB'

The DB2 system identified by DSNX has two DSNLOAD datasets allocated to
XTASKLIB.

The DB2 system identified by DSNZ has one DSNLOAD dataset allocated.

The system identified by DSNY does not have any DSNLOAD datasets allocated.

A DB2 test with no system specified is allocated on the DSNLOAD dataset.

Profile: DEFAULT ------ XPEDITER/TSO - DSNLOAD LIBRARIES -----------------------
COMMAND ===>

 NAME DSNLOAD DSNAME

(1) ===> D310 ===> 'DB2.V310X.DSNLOAD'
(2) ===> D220 ===> 'DB2.V220X.DSNLOAD'
(3) ===> ===>
(4) ===> ===>
(5) ===> ===>
(6) ===> ===>
(7) ===> ===>
(8) ===> ===>

 Note: Changes made to this screen override installed defaults

 Press ENTER to Process or Enter END Command to Terminate

C-16 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
PANEXEC Libraries Screen

 The PANEXEC Libraries screen (Figure C-14) is used to enter the library names and con-
trol card file datasets necessary to debug your application programs using PANEXEC.

Figure C-14. PANEXEC Libraries Screen

The fields on the PANEXEC Libraries screen are:

PANEXEC Load Library DSNAMEs

Enter the dataset name normally allocated to ddname PANESRL.

PANEXEC Control Card File DSNAMES

Enter the default ddname associated with your PANEXEC control cards. The default is
PECNTL.

If you normally direct your PECNTL (or site default PANEXEC control cards ddname)
to a dataset rather than to instream data, enter that dataset in the next field.

IMS Setup Menu
The menu that appears for option I (IMS) on the IMS Test Setup Menu is shown in Figure
C-15 on page C-17. The screens for these options are used to specify the datasets to be
allocated to the IMS ddnames. The nine screens can be selected individually or all
together as a complete sequence.

The following screens are required:

• IMS processing types and parameters (option 1)
• IMS authorized load libraries (option 2)
• PSB and DBD libraries (option 3)
• ACB libraries (option 4)

All these parameters are required to debug an IMS program.

The rest of the selections on the menu are optional.

The values specific to each of the screens should have been completed at installation
time. You may want to merely verify them, or in some cases, add to or override the instal-

COMPUWARE INSTALL ----- XPEDITER/TSO - PANEXEC LIBRARIES ----------------------
COMMAND ===>

PANEXEC (Program Product) Load Library DSNAMEs (DDNAME PANESRL):

 (1) ===>
 (2) ===>
 (3) ===>
 (4) ===>

PANEXEC Control Card File DSNAMEs:

 DDNAME ===> PECNTL
 (1) ===>
 (2) ===>
 (3) ===>
 (4) ===>

 Note: Changes made to this screen override installed defaults

 Press ENTER to process or enter END command to terminate

Specifying Setup Options C-17
lation defaults. For example, you may want to change program parameters specific to
your application.

All the IMS setup screens are described in the following subsections.

Figure C-15. IMS Setup Menu Screen

IMS Parameter Lists Screen

The IMS Parameter Lists screen (Figure C-16) lets you specify the valid program types and
their corresponding parameter lists.

Figure C-16. IMS Parameter Lists Screen

The fields on the IMS Parameter Lists screen are:

Profile: C64 ------------- XPEDITER/TSO - IMS SETUP MENU -----------------------
OPTION ===>

 1 PARMS - IMS processing types and parameters
 2 DFSRESLB - IMS authorized load libraries
 3 IMS - PSB and DBD libraries
 4 IMSACB - ACB libraries
 5 PROCLIB - IMS PROCLIB containing the preload list
 6 IEFRDER - IMS logging and recovery dataset
 7 IMSMON - IMS DB monitor dataset
 8 DFSVSAMP - VSAM shared resource pool dataset
 9 IMSERR - IMS error dataset

 A ALL - Display all of the above in succession

 Press ENTER to process or enter END command to terminate

Profile: C64 -------- XPEDITER/TSO - IMS PARAMETER LISTS --------------------
COMMAND ===>

 TYPE PARM LIST

(1) ===> DLI ===> DLI,MODULE,PSB,8,0000,,0,,N,0,T,,,N

(2) ===> BMP ===> BMP,MODULE,PSB,,,N00000

(3) ===> DBB ===> DBB,MODULE,PSB,8,0000,,0,,N,0,T,,,N

(4) ===> ===>

(5) ===> ===>

(6) ===> ===>

(7) ===> ===>

(8) ===> ===>

 Note: Changes made to this screen override installed defaults
 Press ENTER to Process or Enter END Command to Terminate

C-18 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
TYPE

Enter the IMS program types supported at your site (DLI, DBB, BMP, etc.). Create a
separate line for each type and its corresponding PARM list.

PARM LIST

Enter the PARM list for the specified type. Each list contains the program type
followed by the keywords ",MODULE,PSB," and the rest of the parameters used at
your site. At execution time, the ",MODULE,PSB," string is replaced with the program
name and program specification block that the user enters on the test screen.

The supplied default parameter string(s) probably will not function correctly at your
site. If you are uncertain what parameter list to specify, consult one of the following
information sources:

– One of your site’s typical DLI/BMP batch PROCs
– Your system programmer
– IBM’s IMS/VS System Programming Reference Manual
– General information available through the HELP screens.

Note: Special characters (anything other than numerics, alphabetic characters, $, #,
or @) must be enclosed in quotation marks.

Using APARM Data from JCL

On the XPEDITER/TSO environments IMS Test screen (2.3) shown in Figure B-8 on page
B-11, if the file specified in the File List/JCL Member field consists of JCL and its IMS
parameter contains APARM data, XPEDITER will use that data for the test. Replacement
APARM data can be entered in the APARM position of the applicable parameter list on the
IMS Parameter List screen (Figure C-16 on page C-17). To prevent any APARM data,
including that in the JCL, from being sent to the program being tested, enter XPNULLXP
in the APARM position of the applicable parameter list.

IMS Load (DFSRESLB) Libraries Screen

The IMS DFSRESLB Libraries screen (Figure C-17) is used to allocate the dsnames of the
IMS authorized load libraries to the DFSRESLB ddname. The DFSRESLB dataset contains
all the system load modules that make up the IMS software, including both DL/I and the
data communications component.

Figure C-17. IMS DFSRESLB Libraries Screen

Profile: C64 -------- XPEDITER/TSO - DFSRESLB LIBRARIES --------------------
COMMAND ===>

IMS Authorized Load Library DSNAMEs (DDNAME DFSRESLB):

 (1) ===> 'IMS610A.RESLIB'
 (2) ===>
 (3) ===>
 (4) ===>
 (5) ===>
 (6) ===>

 Note: Changes made to this screen override installed defaults

 Press ENTER to Process or Enter END Command to Terminate

Specifying Setup Options C-19
The field on this screen is:

IMS Authorized Load Library DSNAMEs

Enter from one to six dsnames. Consult a batch IMS PROC at your site if you are not
sure which dsnames to enter.

PSB and DBD Libraries Screen

The PSB/DBD Libraries screen (Figure C-18) is used to list your IMS PSB and DBD library
dataset names. The PSBLIB contains your program specification blocks (PSBs). The
DBDLIB contains your data base definitions (DBDs). Both of these datasets are required
with DB or DB/DC systems. They can also be used if a DL/I batch region is being exe-
cuted.

Figure C-18. PSB/DBD Libraries Screen

The field on the PSB/DBD screen is:

PSB/DBD Library DSNAMEs

Enter from zero to twelve dsnames. Consult a batch IMS PROC at your site if you are
unsure of the dsnames. If the application being debugged uses ACB libraries, the
DSNAME field can be left blank because the ACBLIB dataset stores the combined
DBDs and PSBs.

ACB Libraries Screen

The ACB Libraries screen (Figure C-19) is used to enter your ACB library dataset names.
When an IMS application program is executed, IMS must combine the information in the
DBD and PSB before the program can be executed. Your shop can merge the DBD and PSB
information in the ACBLIB, so that IMS will not have to do this each time a program
runs. The use of the ACBLIB dataset is optional for batch IMS programs, but is required
for MPP and BMP programs.

Profile: C64 --------- XPEDITER/TSO - PSB/DBD LIBRARIES -------------------
COMMAND ===>

PSB/DBD Library DSNAMEs (DDNAME IMS):

 (1) ===> 'FLGSGJ1.X70.IMS61.PSBLIB'
 (2) ===> 'FLGSGJ1.X70.IMS61.DBDLIB'
 (3) ===>
 (4) ===>
 (5) ===>
 (6) ===>
 (7) ===>
 (8) ===>
 (9) ===>
 (10) ===>
 (11) ===>
 (12) ===>

 Note: Changes made to this screen override installed defaults

 Press ENTER to Process or Enter END Command to Terminate

C-20 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure C-19. ACB Libraries Screen

The field on this screen is:

ACB Library DSNAMEs

Enter from zero to eight dsnames. Consult a batch PROC at your site if you are
unsure of the dsnames. The DSNAME field can be left blank if the application being
debugged uses PSB and DBD libraries.

IMS Preload List Screen

The IMS Preload List screen (Figure C-20) lets you enter the PROCLIB dataset name. Both
IMS and BTS use the PROCLIB ddname to point to the dataset where preload specifica-
tions are stored. The IMSVS.PROCLIB dataset stores all IMS-generated cataloged proce-
dures and jobs. DFSMPLxx is the IMSVS.PROCLIB member that contains the preload list,
which is a group of modules to be loaded before IMS loads the user’s program.

A 2-character suffix from a parameter list is used to select the preload list to be executed.
For example, suppose you specify that the following DLI parameter list is to be used with
your program. (The DLI parameter list shown below would be displayed on your IMS
Parameter Lists screen.)

 TYPE PARM LIST
===> DLI ===> DLI,MODULE,PSB,12,0000,00,0,,N

Notice that the sixth parameter is a pair of zeros. This suffix is concatenated with DFSM-
PLxx to define DFSMPL00 as the name of your preload list. Omit the suffix if no preload
list is needed.

Profile: C64 ---------- XPEDITER/TSO - ACB LIBRARIES --------------------
COMMAND ===>

ACB Library DSNAMEs (DDNAME IMSACB):

 (1) ===> 'FLGSGJ1.X70.IMS61.ACBLIB'
 (2) ===>
 (3) ===>
 (4) ===>
 (5) ===>
 (6) ===>
 (7) ===>
 (8) ===>

 Note: Changes made to this screen override installed defaults

 Press ENTER to Process or Enter END Command to Terminate

Specifying Setup Options C-21
Figure C-20. IMS Preload List Screen

The field on this screen is:

Preload List Data Set

Enter the name of the dataset containing preload lists, not the name of the dataset
where XPEDITER/TSO or IMS PROCs are stored, unless the two are identical. Consult
an IMS batch PROC at your site if you are not sure which dsname to enter. If this
ddname is not required, leave the DSNAME field blank.

Logging and Recovery (IEFRDER) Dataset Screen

The IEFRDER Dataset screen (Figure C-21) is used to allocate a dataset to the IEFRDER
ddname. Supplying an IEFRDER dataset causes the IMS logging facility to be invoked.

Figure C-21. IEFRDER Dataset Screen

The fields on this screen are:

Profile: C64 --------- XPEDITER/TSO - IMS PRELOAD LIST ---------------------
COMMAND ===>

Preload List Data Set (DDNAME PROCLIB):

 DSNAME ===> 'SYS1.IMSVS.PROCLIB'

 Note: Changes made to this screen override installed defaults

 Press ENTER to Process or Enter END Command to Terminate

Profile: C64 --------- XPEDITER/TSO - IEFRDER DATASET ---------------------
COMMAND ===>

Enter a DSNAME, DUMMY, TEMP, TERM, SYSOUT, or leave blank for no allocation.

 DSNAME ===> DUMMY
 DISP ===>

Storage Class ===> Process Options for New Datasets:
 Unit ===> Before Allocation ===>
 Volume ===> Upon Deallocation ===>

 Data Class ===> Valid Process Options:
 Space Units ===> D (Delete) K (Keep) ? (Prompt)
 Primary ===>
 Secondary ===>
 RECFM ===>
 LRECL ===>
 BLKSIZE ===>

 Note: Changes made to this screen override installed defaults

 Press ENTER to process or enter END command to terminate

C-22 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
DSNAME

Enter a qualified dsname (enclosed in quotes), DUMMY, TEMP, TERM, or SYSOUT
(JES dataset), or leave this field blank. If the dsname is entered without quotes, the
user ID (or other dsname high-level qualifier) is prefixed and quotes are added. If the
DSNAME field is left blank, the dataset is not allocated.

Consult a batch IMS PROC at your site if you are not sure which dsname to enter. If
the IEFRDER ddname is not required, you can leave the DSNAME field blank.
Actually, most sites allocate this ddname to DUMMY for debugging rather than
leaving it blank. This conforms to common batch and debugging message region
usage.

DISP

Valid values for the DISP field are:

If you are allocating an existing dataset, you can specify a disposition of SHR, OLD,
or MOD. If you do not enter a value in the DISP field, a SHR disposition is assumed.
Datasets with a disposition of SHR can be concatenated.

If the DSNAME field contains a value of DUMMY, TEMP, TERM, or SYSOUT, leave the
DISP field blank.

Enter a disposition of NEW for a new or temporary dataset. If you are allocating a
new (DSNAME=’qualified-dsname’) or temporary file (DSNAME=TEMP), you must
enter values for all the fields below except Volume and Unit, which are optional for a
NEW or TEMP file.

If you specify a new dataset, it is allocated before your debugging session begins and
is deallocated immediately after your debugging session ends. The fields for the
Process Options for New Datasets let you specify how the new dataset is to be
allocated and deallocated.

For more information about NEW, OLD, MOD, or SHR dataset dispositions, refer to
“Types of Files That Can Be Allocated” on page A-17.

Storage Class

Enter the storage class name defined by your site that contains the dataset attributes
related to the storage occupied by the dataset. A storage class is displayed only when
SMS (Storage Management Subsystem) is being used.

Unit

If your site requires it, you must supply a value for the Unit field. Otherwise, leave
blank for the default value.

Volume

If your site requires it, you must supply a value for the Volume field. Also enter the
volume if you are specifying an uncataloged dataset. Otherwise, leave blank for the
default value.

Data Class

Enter the data class name defined by your site that contains the dataset attributes
related to the allocation of the dataset. A data class is displayed only when SMS
(Storage Management Subsystem) is being used.

S Shared (SHR)

M Modified (MOD)

O Old

N New

Specifying Setup Options C-23
Space Units

Valid values are TRK, CYL, or a block size (1-32760).

Primary

Valid values are 0-32760.

Secondary

Valid values are 0-32760.

RECFM

Valid values are FBM, FBA, FB, F, VBM, VBA, VBS, VS, VB, V, and U.

LRECL

Valid values are 0-32760. Omit this field if RECFM is U for undefined length records.

BLKSIZE

Valid values are 0-32760.

If you are allocating a DUMMY or SYSOUT file (DSNAME=DUMMY or
DSNAME=SYSOUT), you must enter the block size.

Before Allocation

Valid process options are:

Upon Deallocation

Valid process options are:

IMS Monitor (IMSMON) Dataset Screen

The IMSMON Dataset screen is used to allocate the DB and DC monitor datasets to the
IMSMON ddname. IMS run-time activities, especially database calls, are recorded in the
IMS monitor file. This dataset can be used as an input for report programs that list, sum-
marize, or analyze IMS activities.

D Automatically delete the old file, if one exists, before a new dataset is allo-
cated.

K Keep the old dataset.

? Display the Data Set Disposition screen each time a dataset is to be allocated,
so that you can decide whether to delete or keep the old one.

D Automatically delete the new file after every debugging session.

K Always keep the new dataset.

? Display the Data Set Disposition screen each time a dataset is to be deallo-
cated, so that you can decide whether to delete or keep the new one.

C-24 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure C-22. IMSMON Dataset Screen

The valid values for the fields on this screen are the same as for the IEFRDER screen. Refer
to “Logging and Recovery (IEFRDER) Dataset Screen” on page C-21 for descriptions of
these fields.

VSAM Buffer Pool Screen

The VSAM Buffer Pool screen, shown in Figure C-23, is used to enter the name of the
dataset that contains the buffer length and the number of buffers to be used for a pro-
gram.

Figure C-23. VSAM Buffer Pool Screen

The field on this screen is:

Profile: C64 ---------- XPEDITER/TSO - IMSMON DATASET ---------------------
COMMAND ===>

Enter a DSNAME, DUMMY, TEMP, TERM, SYSOUT, or leave blank for no allocation.

 DSNAME ===> DUMMY
 DISP ===>

Storage Class ===> Process Options for New Datasets:
 Unit ===> Before Allocation ===>
 Volume ===> Upon Deallocation ===>

 Data Class ===> Valid Process Options:
 Space Units ===> D (Delete) K (Keep) ? (Prompt)
 Primary ===>
 Secondary ===>
 RECFM ===>
 LRECL ===> n
 BLKSIZE ===>

 Note: Changes made to this screen override installed defaults

 Press ENTER to process or enter END command to terminate

Profile: C64 -------- XPEDITER/TSO - VSAM BUFFER POOL ---------------------
COMMAND ===>

VSAM Buffer Pool Specification Data Set (DDNAME DFSVSAMP):

 DSNAME ===> 'SYS1.IMSVS.PROCLIB(DFSVSAMP)'

 Note: Changes made to this screen override installed defaults

 Press ENTER to Process or Enter END Command to Terminate

Specifying Setup Options C-25
VSAM Buffer Pool Specification Data Set

The DFSVSAMP dataset contains the buffer length and the number of buffers to be
used for a program. If not stated, IMS uses a default buffer size. If the DFSVSAMP
dataset is a PDS, enter its member name.

If VSAM databases are used, this dataset must be allocated. Since BTS can attach IMS
more than once, define the DFSVSAMP file as a DASD dataset so it can be reread. The
DFSVSAMP file can also be used for ISAM/OSAM databases.

Consult a batch PROC at your site if you are unsure of the dsname. If this ddname is
not required, leave the DSNAME field blank.

IMS Error (IMSERR) Dataset Screen

The IMSERR Dataset screen (Figure C-24) is used to allocate datasets to the IMSERR
ddname. An IMSERR dataset contains the formatted dump of the IMS/VS GSAM control
blocks when an error occurs, or when a DUMP or SNAP call is issued to a GSAM PCB.

Figure C-24. IMSERR Dataset Screen

The valid values for the fields on this screen are the same as for the IEFRDER screen. Refer
to “Logging and Recovery (IEFRDER) Dataset Screen” on page C-21 for descriptions of
these fields.

Note: Consult a batch IMS PROC at your site if you are unsure of the dsname. Most sites
allocate this ddname to DUMMY for debugging.

BTS Setup Menu
The menu that appears for option B (BTS) on the BTS Test Setup Menu screen is shown in
Figure C-25 on page C-26. The BTS Setup Menu is used to select screens where you can
list the datasets to be allocated to BTS ddnames. The values specific to each of the option
screens should have been completed at installation time. You may want to verify them,
or in some cases, add to or override the installation defaults. The nine screens can be
selected individually or all together as a complete sequence.

The following parameters are required to debug a BTS program:

Profile: C64 ---------- XPEDITER/TSO - IMSERR DATASET ---------------------
COMMAND ===>

Enter a DSNAME, DUMMY, TEMP, TERM, SYSOUT, or leave blank for no allocation.

 DSNAME ===> SYSOUT=*
 DISP ===>

Storage Class ===> Process Options for New Datasets:
 Unit ===> Before Allocation ===>
 Volume ===> Upon Deallocation ===>

 Data Class ===> Valid Process Options:
 Space Units ===> D (Delete) K (Keep) ? (Prompt)
 Primary ===>
 Secondary ===>
 RECFM ===> FBA
 LRECL ===> 133
 BLKSIZE ===> 133

 Note: Changes made to this screen override installed defaults

 Press ENTER to process or enter END command to terminate

C-26 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
1. BTS processing types and parameters (option 1)

2. BTS load libraries (option 2)

3. BTSIN dataset, which is dynamically allocated by the application programmer during
the debugging session

All of the BTS setup screens are described in the following subsections.

Figure C-25. BTS Setup Menu

BTS Parameter Lists Screen

The BTS Parameter Lists screen (Figure C-26) is used to specify the valid program types
and their corresponding PARM lists.

Figure C-26. BTS Parameter Lists Screen

The fields on this screen are:

Profile: C64 ---------- XPEDITER/TSO - BTS SETUP MENU ---------------------
OPTION ===>

 1 PARMS - BTS processing types and parameters
 2 BTSLOAD - BTS load libraries
 3 FORMAT - MFS libraries
 4 BTSOUT - BTS output listing file
 5 BTSPUNCH - BTS regression test input file
 6 BTSDEBUG - BTS debug output file
 7 QIOPCB - Work file for output message queue (IOPCB)
 8 QALTPCB - Work file for output message queue (ALTPCB)
 9 QALTRAN - Work file for alternate PCB output

 A ALL - Display all of the above in succession

 Press ENTER to process or enter END command to terminate

Profile: C64 -------- XPEDITER/TSO - BTS PARAMETER LISTS --------------------
COMMAND ===>

 TYPE PARM LIST

(1) ===> DLI ===> DLI,7,0000,,0,,N,0,T,,,N

(2) ===> DBB ===> DBB,7,0000,,0,,N,0,T,,,N

(3) ===> BMP ===> BMP,,,N00000,,,,,,,,,IVP

(4) ===> ===>

(5) ===> ===>

(6) ===> ===>

(7) ===> ===>

(8) ===> ===>

 Note: Changes made to this screen override installed defaults
 Press ENTER to Process or Enter END Command to Terminate

Specifying Setup Options C-27
TYPE

Enter the BTS program types supported at your site (DLI, DBB, BMP, etc.). Create a
separate line for each type and its corresponding PARM list.

PARM LIST

Enter the parameter list. Each list begins with the program type followed by the rest
of the parameters used at your site.

Note: Special characters (anything other than numerics, alphabetic characters, $, #,
or @) must be enclosed in quotation marks.

BTS Load Libraries Screen

The BTS Load Libraries screen (Figure C-27) is used to enter the dataset names of your BTS
authorized load libraries. Do not enter dsnames for your application programs that are
compiled to run under BTS. The BTS load libraries are system datasets that contain all the
load modules that make up the BTS software.

Figure C-27. BTS Load Libraries Screen

The field on this screen is:

BTS (Program Product) Load Library DSNAMEs

Enter from one to six dsnames. Consult a batch BTS PROC at your site if you are not
sure which dsnames to enter.

MFS Libraries (Format) Screen

The MFS Libraries screen (Figure C-28 on page C-28) is used to enter your format library
dataset names. The message format service helps to format messages that are transmitted
to and from display screens. These message definitions are stored in the format library.

Profile: C64 -------- XPEDITER/TSO - BTS LOAD LIBRARIES -------------------
COMMAND ===>

BTS (Program Product) Load Library DSNAMEs:

 (1) ===> 'SYS2.BTS3.V1R2M0.BTSLIB'
 (2) ===>
 (3) ===>
 (4) ===>
 (5) ===>
 (6) ===>

 Note: Changes made to this screen override installed defaults

 Press ENTER to Process or Enter END Command to Terminate

C-28 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure C-28. MFS Libraries Screen

The field on this screen is:

Message Format Services Library DSNAMEs

Enter from one to twelve dsnames. Consult a batch BTS PROC at your site if you are
unsure which dsnames to enter. These DSNAME fields can be left blank if the
application to be debugged does not use MFS.

BTS Output (BTSOUT Dataset) Screen

The BTSOUT Dataset screen (Figure C-29) is used to allocate a sequential dataset to the
BTSOUT ddname. The BTS input and output screen images and output messages are writ-
ten to this BTS output listing. You can retain a copy of the BTSOUT dataset or, if it was
allocated with SYSOUT=A, you can print a hard copy.

Figure C-29. BTSOUT Dataset Screen

Profile: C64 ----------- XPEDITER/TSO - MFS LIBRARIES ----------------------
COMMAND ===>

Message Format Services Library DSNAMEs (DDNAME FORMAT):

 (1) ===> 'IMS610A.TFORMAT'
 (2) ===> 'IMS610A.FORMAT'
 (3) ===>
 (4) ===>
 (5) ===>
 (6) ===>
 (7) ===>
 (8) ===>
 (9) ===>
 (10) ===>
 (11) ===>
 (12) ===>

 Note: Changes made to this screen override installed defaults

 Press ENTER to Process or Enter END Command to Terminate

Profile: C64 ---------- XPEDITER/TSO - BTSOUT DATASET ----------------------
COMMAND ===>

Enter a DSNAME, DUMMY, TEMP, TERM, SYSOUT, or leave blank for no allocation

 DSNAME ===> BTSOUT.DATA
 DISP ===> NEW

Storage Class ===> Process Options for New Datasets:
 Unit ===> Before Allocation ===>
 Volume ===> Upon Deallocation ===

 Data Class ===> Valid Process Options:
 Space Units ===> TRK D (Delete) K (Keep) ? (Prompt)
 Primary ===> 2
 Secondary ===> 2
 RECFM ===> FBA
 LRECL ===> 133
 BLKSIZE ===> 6118

 Note: Changes made to this screen override installed defaults

 Press ENTER to process or enter END command to terminate

Specifying Setup Options C-29
The fields on the BTSOUT Dataset screen are:

DSNAME

Enter a qualified dsname (enclosed in quotes), DUMMY, TEMP, TERM, or SYSOUT
(JES dataset), or leave this field blank. If the dsname is entered without quotes, the
user ID (or other dsname high-level qualifier) is prefixed and quotes are added. If the
DSNAME field is left blank, the dataset is not allocated.

Consult a batch BTS PROC at your site if you are not sure which dsname to enter. If
the BTSOUT ddname is not to be allocated, leave the DSNAME field blank.

DISP

Valid values for the DISP field are:

If you are allocating an existing dataset, you can specify a disposition of SHR, OLD,
or MOD. If you do not enter a value in the DISP field, a SHR disposition is assumed.
Datasets with a disposition of SHR can be concatenated.

If the DSNAME field contains a value of DUMMY, TEMP, TERM, or SYSOUT, leave the
DISP field blank.

Enter a disposition of NEW for a new or temporary dataset. If you are allocating a
new (DSNAME='qualified-dsname') or temporary file (DSNAME=TEMP), you must
enter values for all the fields below except Volume and Unit, which are optional for a
new or temporary file.

If you specify a new dataset, it is allocated before your debugging session begins and
is deallocated immediately after your debugging session ends. The fields for the
Process Options for New Datasets let you specify how the new dataset is to be
allocated and deallocated.

For more information about NEW, OLD, MOD, or SHR dataset dispositions, refer to
“Types of Files That Can Be Allocated” on page A-17.

Storage Class

Enter the storage class name defined by your site that contains the dataset attributes
related to the storage occupied by the dataset. A storage class is displayed only when
SMS (Storage Management Subsystem) is being used.

Unit

If your site requires it, you must supply a value for the Unit field. Otherwise, leave
blank for the default value.

Volume

If your site requires it, you must supply a value for the Volume field. Also enter the
volume if you are specifying an uncataloged dataset. Otherwise, leave blank for the
default value.

Data Class

Enter the data class name defined by your site that contains the dataset attributes
related to the allocation of the dataset. A data class is displayed only when SMS
(Storage Management Subsystem) is being used.

Space Units

Valid values are TRK, CYL, or a block size (1-32760).

S Shared (SHR)

M Modified (MOD)

O Old

N New

C-30 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Primary

Valid values are 0-32760.

Secondary

Valid values are 0-32760.

RECFM

Valid values are FBM, FBA, FB, F, VBM, VBA, VBS, VS, VB, V, and U.

LRECL

Valid values are 0-32760 (omit if RECFM is U for undefined length records).

BLKSIZE

Valid values are 0-32760.

If you are allocating a DUMMY or SYSOUT file (DSNAME=DUMMY or
DSNAME=SYSOUT), you must enter the block size.

Before Allocation

Valid process options are:

Upon Deallocation

Valid process options are:

BTS Punch Output (BTSPUNCH Dataset) Screen

The BTSPUNCH Dataset screen (Figure C-30 on page C-31) is used to allocate a sequential
dataset to the BTSPUNCH ddname. If executing as a TSO task, BTS attempts to open a
sequential output dataset named BTSPUNCH. This dataset is used to create regression
debugging input data. It contains everything that BTS receives as input.

D Automatically delete the old file, if one exists, before a new dataset is allo-
cated.

K Always keep the old dataset.

? Display the Data Set Disposition screen each time a dataset is to be allocated,
so that you can decide whether to delete or keep the old dataset.

D Automatically delete the new file after every debugging session.

K Always keep the new dataset.

? Display the Data Set Disposition screen each time a dataset is to be deallo-
cated, so that you can decide whether to delete or keep the new dataset.

Specifying Setup Options C-31
Figure C-30. BTSPUNCH Dataset Screen

The fields on this screen are:

DSNAME

Enter a qualified dsname (enclosed in quotes), DUMMY, TEMP, TERM, or SYSOUT
(JES dataset), or leave this field blank. If the dsname is entered without quotes, the
user ID (or other dsname high-level qualifier) is prefixed and quotes are added. If the
DSNAME field is left blank, the dataset is not allocated.

Consult a batch BTS PROC at your site if you are not sure which dsname to enter. If
you decide not to use this dataset, leave the DSNAME field blank. Most sites allocate
this ddname to DUMMY for debugging rather than leaving it blank. This conforms to
common batch and debugging message region usage.

The valid values for the remaining fields on this screen are the same as those on the
BTSOUT Dataset screen. Refer to the “BTS Output (BTSOUT Dataset) Screen” on page
C-28 for descriptions of the fields.

BTS Debug (BTSDEBUG Dataset) Screen

The BTS Debug function is activated by allocating a dataset to the BTSDEBUG ddname.
The BTSDEBUG dataset contains SNAP dumps of the Trace Table and various control
blocks taken at critical points during BTS execution. The BTSDEBUG Dataset screen is
shown in Figure C-31 on page C-32.

Profile: C64 --------- XPEDITER/TSO - BTSPUNCH DATASET ----------------------
COMMAND ===>

Enter a DSNAME, DUMMY, TEMP, TERM, SYSOUT, or leave blank for no allocation

 DSNAME ===> DUMMY
 DISP ===>

Storage Class ===> Process Options for New Datasets:
 Unit ===> Before Allocation ===>
 Volume ===> Upon Deallocation ===>

 Data Class ===> Valid Process Options:
 Space Units ===> D (Delete) K (Keep) ? (Prompt)
 Primary ===>
 Secondary ===>
 RECFM ===>
 LRECL ===>
 BLKSIZE ===>

 Note: Changes made to this screen override installed defaults

 Press ENTER to process or enter END command to terminate

C-32 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure C-31. BTSDEBUG Dataset Screen

The fields on the BTSDEBUG Dataset screen are:

DSNAME

Enter a qualified dsname (enclosed in quotes), TEMP, TERM, or SYSOUT (JES dataset),
or leave this field blank. If the dsname is entered without quotes, the user ID (or
other dsname high-level qualifier) is prefixed and quotes are added. If the DSNAME
field is left blank, the dataset is not allocated.

Note: For performance reasons, IBM strongly recommends that you do not allocate
BTSDEBUG to DUMMY.

DISP

Valid values for the DISP field are:

If TERM or SYSOUT was entered in the DSNAME field, you do not have to supply a
value for the DISP field. If you are allocating a SYSOUT file (DSNAME=SYSOUT),
enter the block size in the BLKSIZE field.

Datasets with a disposition of SHR can be concatenated.

Enter a disposition of NEW for a new or temporary dataset. If you are allocating a
new (DSNAME='qualified-dsname') or temporary file (DSNAME=TEMP), you must
enter values for all the remaining fields except Volume and Unit, which are optional
for a new or temporary file. If you specify a new dataset, it is allocated before your
debugging session begins and is deallocated immediately after your debugging
session ends. The fields for the Process Options for New Datasets let you specify how
the new dataset is to be allocated and deallocated.

N New

O Old

M Modified (MOD)

S Shared (SHR)

Profile: C64 --------- XPEDITER/TSO - BTSDEBUG DATASET ----------------------
COMMAND ===>

Enter a DSNAME, TEMP, TERM, SYSOUT, or leave blank for no allocation

 DSNAME ===> TEMP
 DISP ===>

Storage Class ===> Process Options for New Datasets:
 Unit ===> Before Allocation ===>
 Volume ===> Upon Deallocation ===>

 Data Class ===> Valid Process Options:
 Space Units ===> TRK D (Delete) K (Keep) ? (Prompt)
 Primary ===> 2
 Secondary ===> 2
 RECFM ===>
 LRECL ===>
 BLKSIZE ===>

 Note: Changes made to this screen override installed defaults

 Press ENTER to process or enter END command to terminate

Specifying Setup Options C-33
The valid values for the remaining fields on this screen are the same as those on the
BTSOUT Dataset screen. Refer to “BTS Output (BTSOUT Dataset) Screen” on page C-28 for
descriptions of the fields.

BTS Work File (QIOPCB Dataset) Screen

The BTS QIOPCB Dataset screen (Figure C-32) is used to allocate a dataset to the QIOPCB
ddname. The QIOPCB dataset is used for INSERT calls against IOPCBs.

Figure C-32. QIOPCB Dataset Screen

The fields on this screen are:

DSNAME

Enter a qualified dsname (enclosed in quotes), DUMMY, TEMP, TERM, or SYSOUT
(JES dataset), or leave this field blank. If the dsname is entered without quotes, the
user ID (or other dsname high-level qualifier) is prefixed and quotes are added. If the
DSNAME field is left blank, the dataset is not allocated.

Consult a batch BTS PROC at your site if you are not sure which dsname to enter. If
the QIOPCB ddname is not required, you can leave the DSNAME field blank.

Most sites allocate this ddname to TEMP for debugging. Therefore, since this is a
NEW dataset, the DCB attributes must be entered. The LRECL and BLKSIZE should
match the largest used by any application.

Note: The prefilled defaults for LRECL and BLKSIZE are rarely large enough for
actual application databases and transactions. Therefore, carefully check
your output (and application usage) before specifying them.

The valid values for the remaining fields on this screen are the same as those on the
BTSOUT Dataset screen. Refer to “BTS Output (BTSOUT Dataset) Screen” on page C-28 for
descriptions of the fields.

BTS Work File (QALTPCB Dataset) Screen

The QALTPCB Dataset screen (Figure C-33 on page C-34) is used to allocate a dataset to
the QALTPCB ddname. The QALTPCB dataset is used for GET-UNIQUE or INSERT calls
against alternate PCBs.

Profile: C64 ----------- XPEDITER/TSO - QIOPCB DATASET ----------------------
COMMAND ===>

Enter a DSNAME, DUMMY, TEMP, TERM, SYSOUT, or leave blank for no allocation

 DSNAME ===> TEMP
 DISP ===>

Storage Class ===> Process Options for New Datasets:
 Unit ===> VIO Before Allocation ===>
 Volume ===> Upon Deallocation ===>

 Data Class ===> Valid Process Options:
 Space Units ===> TRK D (Delete) K (Keep) ? (Prompt)
 Primary ===> 2
 Secondary ===> 2
 RECFM ===> VBS
 LRECL ===> 1024
 BLKSIZE ===> 3072

 Note: Changes made to this screen override installed defaults

 Press ENTER to process or enter END command to terminate

C-34 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure C-33. QALTPCB Dataset Screen

The fields on this screen are:

DSNAME

Enter a qualified dsname (enclosed in quotes), DUMMY, TEMP, TERM, or SYSOUT
(JES dataset), or leave this field blank. If the dsname is entered without quotes, the
user ID (or other dsname high-level qualifier) is prefixed and quotes are added. If the
DSNAME field is left blank, the dataset is not allocated.

Consult a batch BTS PROC at your site if you are not sure which dsname to enter. If
you do not plan to use the QALTPCB dataset, you can leave the DSNAME field blank.

Most sites allocate this ddname to TEMP for debugging. Therefore, since this is a new
dataset, the DCB attributes must be entered. The LRECL and BLKSIZE should match
the largest used by any application.

Note: The prefilled defaults for LRECL and BLKSIZE are rarely large enough for
actual application databases and transactions. Therefore, carefully check
your output (and application usage) before specifying them.

The valid values for the remaining fields on this screen are the same as those on the
BTSOUT Dataset screen. Refer to “BTS Output (BTSOUT Dataset) Screen” on page C-28 for
descriptions of the fields.

BTS Work File (QALTRAN Dataset) Screen

The QALTRAN Dataset screen (Figure C-34 on page C-35) is used to allocate a dataset to
the QALTRAN ddname. The QALTRAN dataset is a work file for alternate PCB output for a
3270 display screen or a 3270 printer.

Profile: C64 ---------- XPEDITER/TSO - QALTPCB DATASET ----------------------
COMMAND ===>

Enter a DSNAME, DUMMY, TEMP, TERM, SYSOUT, or leave blank for no allocation

 DSNAME ===> TEMP
 DISP ===>

Storage Class ===> Process Options for New Datasets:
 Unit ===> VIO Before Allocation ===>
 Volume ===> Upon Deallocation ===>

 Data Class ===> Valid Process Options:
 Space Units ===> TRK D (Delete) K (Keep) ? (Prompt)
 Primary ===> 2
 Secondary ===> 2
 RECFM ===> VBS
 LRECL ===> 1024
 BLKSIZE ===> 3072

 Note: Changes made to this screen override installed defaults

 Press ENTER to process or enter END command to terminate

Specifying Setup Options C-35
Figure C-34. QALTRAN Dataset Screen

The fields on this screen are:

DSNAME

Enter a qualified dsname (enclosed in quotes), DUMMY, TEMP, TERM, or SYSOUT
(JES dataset), or leave this field blank. If the dsname is entered without quotes, the
user ID (or other dsname high-level qualifier) is prefixed and quotes are added. If the
DSNAME field is left blank, the dataset is not allocated.

Consult a batch BTS PROC at your site if you are not sure which dsname to enter. If
the QALTRAN ddname is not required, leave the DSNAME field blank.

Note: The prefilled defaults for LRECL and BLKSIZE are rarely large enough for
actual application databases and transactions. Therefore, carefully check
your output (and application usage) before specifying them.

The valid values for the remaining fields on this screen are the same as those on the
BTSOUT Dataset screen. Refer to “BTS Output (BTSOUT Dataset) Screen” on page C-28 for
descriptions of the fields.

Hogan Setup Menu
The menu that appears for option H (HOGAN) on the Hogan Setup Menu is shown in Fig-
ure C-35 on page C-36. The Hogan Setup Menu is used to select screens where you can
list the datasets to be allocated to Hogan ddnames. The four screens can be selected indi-
vidually or all together as a complete sequence. The screens for these options are
described in the following subsections.

Profile: C64 ---------- XPEDITER/TSO - QALTRAN DATASET ---------------------
COMMAND ===>

Enter a DSNAME, DUMMY, TEMP, TERM, SYSOUT, or leave blank for no allocation

 DSNAME ===> TEMP
 DISP ===>

Storage Class ===> Process Options for New Datasets:
 Unit ===> VIO Before Allocation ===>
 Volume ===> Upon Deallocation ===>

 Data Class ===> Valid Process Options:
 Space Units ===> TRK D (Delete) K (Keep) ? (Prompt)
 Primary ===> 2
 Secondary ===> 2
 RECFM ===>
 LRECL ===>
 BLKSIZE ===> 1024

 Note: Changes made to this screen override installed defaults

 Press ENTER to process or enter END command to terminate

C-36 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure C-35. Hogan Setup Menu

Hogan Activity Log (Monitor Dataset) Screen

Data related to PEM calls is recorded in the Hogan monitor file. This file can be used as
input to Hogan report programs that list, summarize, or analyze PEM activities. If it is
not required, leave the DSNAME field blank.

If required, the Hogan monitor file is usually allocated as a variable block sequential file
(VB). If you are using this file for debugging and expect an abend, an LRECL of 55 and a
BLKSIZE of 59 are recommended to limit the loss of data in buffers. If an abend is not
anticipated, then a larger block size is more efficient.

Figure C-36. Hogan Monitor Dataset Screen

The fields on the Hogan Monitor Dataset screen (Figure C-36) are:

DSNAME

If it is not required, leave the DSNAME field blank.

Profile: DEFAULT ------- XPEDITER/TSO - HOGAN SETUP MENU -----------------------
OPTION ===>

 1 MONITOR - Hogan activity log dataset
 2 PRINT - Hogan report file dataset
 3 SNAPDD - Hogan SNAP dump dataset
 4 SYSPRINT - Hogan formatted dump dataset

 A ALL - Display all of the above in succession

 Press ENTER to process or enter END command to terminate

Profile: DEFAULT ----- XPEDITER/TSO - HOGAN MONITOR DATASET --------------------
COMMAND ===>

Enter a DSNAME, DUMMY, TEMP, TERM, SYSOUT, or leave blank for no allocation.

 DSNAME ===>
 DISP ===>

Storage Class ===> Process Options for New Datasets:
 Unit ===> SYSDA Before Allocation ===>
 Volume ===> Upon Deallocation ===>

 Data Class ===> Valid Process Options:
 Space Units ===> TRK D (Delete) K (Keep) ? (Prompt)
 Primary ===> 2
 Secondary ===> 2
 RECFM ===> V85
 LRECL ===> 55
 BLKSIZE ===> 59

 Note: Changes made to this screen override installed defaults

 Press ENTER to process or enter END command to terminate

Specifying Setup Options C-37
If a dsname is required, enter a qualified dsname (enclosed in quotes), DUMMY,
TEMP, TERM, or SYSOUT (JES dataset), or leave this field blank. If the dsname is
entered without quotes, the user ID (or other dsname high-level qualifier) is prefixed
and quotes are added. If the DSNAME field is left blank, the dataset is not allocated.

DISP

Valid values for the DISP field are:

If you are allocating an existing dataset, you can specify a disposition of SHR, OLD,
or MOD. If you do not enter a value in the DISP field, a SHR disposition is assumed.
Datasets with a disposition of SHR can be concatenated.

If the DSNAME field contains a value of DUMMY, TEMP, TERM, or SYSOUT, leave the
DISP field blank.

Enter a disposition of NEW for a new or temporary dataset. If you are allocating a
new (DSNAME=’qualified-dsname’) or temporary file (DSNAME=TEMP), you must
enter values for all the fields below except Volume and Unit, which are optional for a
new or temporary file.

If you specify a new dataset, it is allocated before your debugging session begins and
deallocated immediately after your debugging session ends. The fields for the Process
Options for New Datasets let you specify how the new dataset is to be allocated and
deallocated.

For more information about NEW, OLD, MOD, or SHR dataset dispositions, refer to
“Types of Files That Can Be Allocated” on page A-17.

Storage Class

Enter the storage class name defined by your site that contains the dataset attributes
related to the storage occupied by the dataset. A storage class is displayed only when
SMS (Storage Management Subsystem) is being used.

Unit

If your site requires it, you must supply a value for the Unit field. Otherwise, leave
blank for the default value.

Volume

If your site requires it, you must supply a value for the Volume field. Also enter the
volume if you are specifying an uncataloged dataset. Otherwise, leave blank for the
default value.

Data Class

Enter the data class name defined by your site that contains the dataset attributes
related to the allocation of the dataset. A data class is displayed only when SMS
(Storage Management Subsystem) is being used.

Space Units

Valid values are TRK, CYL, or a block size (1-32760).

Primary

Valid values are 0-32760.

S Shared (SHR)

M Modified (MOD)

O Old

N New

C-38 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Secondary

Valid values are 0-32760.

RECFM

If required, the Hogan monitor file is usually allocated as a variable block sequential
file (VB).

LRECL

If you are using this file for debugging and expect an abend, an LRECL of 55 is
recommended to limit the loss of data in buffers.

BLKSIZE

If you are using this file for debugging and expect an abend, a block size of 59 is
recommended to limit the loss of data in buffers. If an abend is not anticipated, then
a larger block size is more efficient.

If you are allocating a DUMMY or SYSOUT file (DSNAME=DUMMY or
DSNAME=SYSOUT), you must enter the block size.

Before Allocation

Valid process options are:

Upon Deallocation

Valid process options are:

Hogan Report File (Print Dataset) Screen

The Hogan print file is used frequently by Hogan programs to store reports or other out-
put from application programs. The Hogan Print Dataset screen is shown in Figure C-37
on page C-39.

D Automatically delete the old file, if one exists, before a new dataset is allo-
cated.

K Always keep the old dataset.

? Display the Data Set Disposition screen each time a dataset is to be allocated,
so that you can decide whether to delete or keep the old dataset.

D Automatically delete the new file after every debugging session.

K Always keep the new dataset.

? Display the Data Set Disposition screen each time a dataset is to be deallo-
cated, so that you can decide whether to delete or keep the new dataset.

Specifying Setup Options C-39
Figure C-37. Hogan Print Dataset Screen

If needed, this Hogan file is usually allocated with a RECFM of FBA, LRECL of 133, and
BLKSIZE of 6118.

Consult a batch Hogan PROC at your site if you are unsure of the dsname or other param-
eters. If the PRINT ddname is not needed, leave the DSNAME field blank.

The fields on the Hogan Print Dataset screen are similar to the Monitor screen. Refer to
“Hogan Activity Log (Monitor Dataset) Screen” on page C-36 for a description of these
fields.

Hogan SNAP Dump (SNAPDD Dataset) Screen

The Hogan SNAPDD file is used by Hogan to store SNAP dumps. Unlike a SYSUDUMP, a
SNAP dump is not usually a printout of the entire region. A SNAP dump provides a "snap-
shot" of the particular storage pool you want to see, as specified by your Hogan dump
options. The Hogan SNAPDD Dataset Screen is shown in Figure C-38.

Figure C-38. Hogan SNAPDD Dataset Screen

Profile: DEFAULT ------ XPEDITER/TSO - HOGAN PRINT DATASET ---------------------
COMMAND ===>

Enter a DSNAME, DUMMY, TEMP, TERM, SYSOUT, or leave blank for no allocation.

 DSNAME ===> PRINT.LIST
 DISP ===> NEW

Storage Class ===> Process Options for New Datasets:
 Unit ===> Before Allocation ===>
 Volume ===> Upon Deallocation ===>

 Data Class ===> Valid Process Options:
 Space Units ===> TRK D (Delete) K (Keep) ? (Prompt)
 Primary ===> 10
 Secondary ===> 10
 RECFM ===> FBA
 LRECL ===> 133
 BLKSIZE ===> 6118

 Note: Changes made to this screen override installed defaults

 Press ENTER to process or enter END command to terminate

Profile: DEFAULT ------ XPEDITER/TSO - HOGAN SNAPDD DATASET --------------------
COMMAND ===>

Enter a DSNAME, DUMMY, TEMP, TERM, SYSOUT, or leave blank for no allocation.

 DSNAME ===> DUMMY
 DISP ===>

Storage Class ===> Process Options for New Datasets:
 Unit ===> Before Allocation ===>
 Volume ===> Upon Deallocation ===>

 Data Class ===> Valid Process Options:
 Space Units ===> D (Delete) K (Keep) ? (Prompt)
 Primary ===>
 Secondary ===>
 RECFM ===> FBA
 LRECL ===> 133
 BLKSIZE ===> 6118

 Note: Changes made to this screen override installed defaults

 Press ENTER to process or enter END command to terminate

C-40 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
The recommended DCB parameters for the SNAPDD dataset are RECFM=FBA, BLK-
SIZE=6118, and LRECL=133.

Consult a batch Hogan PROC at your site if you are unsure of the dsname. If a SNAPDD
file is not required, leave the DSNAME field blank.

The fields on this screen are similar to the Monitor screen. Refer to “Hogan Activity Log
(Monitor Dataset) Screen” on page C-36 for a description of these fields.

Hogan Formatted Dump (SYSPRINT Dataset) Screen

The Hogan SYSPRINT file is used by Hogan to store PEM formatted dumps. Before run-
ning a transaction, set up your Hogan dump options to print the contents of certain con-
trol blocks or areas in main memory when an abend occurs. The Hogan SYSPRINT
Dataset screen is shown in Figure C-39.

Figure C-39. Hogan SYSPRINT Dataset Screen

The recommended DCB parameters for the SYSPRINT dataset are RECFM=FBA, BLK-
SIZE=6118, and LRECL=133.

Consult a batch Hogan PROC at your site if you are unsure of the dsname. Most sites allo-
cate this ddname to DUMMY for debugging rather than leaving it blank. This conforms
to common batch and debugging message region usage.

The fields on the Hogan SYSPRINT Dataset screen are similar to the Monitor screen. Refer
to the “Hogan Activity Log (Monitor Dataset) Screen” on page C-36 for a description of
these fields.

Profile: DEFAULT ---- XPEDITER/TSO - HOGAN SYSPRINT DATASET --------------------
COMMAND ===>

Enter a DSNAME, DUMMY, TEMP, TERM, SYSOUT, or leave blank for no allocation.

 DSNAME ===> SYSPRINT.LIST
 DISP ===> NEW

Storage Class ===> Process Options for New Datasets:
 Unit ===> Before Allocation ===>
 Volume ===> Upon Deallocation ===>

 Data Class ===> Valid Process Options:
 Space Units ===> TRK D (Delete) K (Keep) ? (Prompt)
 Primary ===> 10
 Secondary ===> 0
 RECFM ===> FBA
 LRECL ===> 133
 BLKSIZE ===> 6118

 Note: Changes made to this screen override installed defaults

 Press ENTER to process or enter END command to terminate

D-1

Appendix A.Appendix D.

DSpecifying Session Defaults App D

You can set or override the defaults to be used during debugging sessions with option 0
(DEFAULTS) on the XPEDITER/TSO Primary Menu. The XPEDITER/TSO Defaults Menu
shown in Figure D-1 is displayed. The defaults you specify remain in effect across all
XPEDITER/TSO and XPEDITER/IMS debugging sessions.

The Defaults Menu

Figure D-1. XPEDITER/TSO Defaults Menu

From this menu you can select to:

1. Modify XPEDITER PF key settings used during your debugging session.

2. Specify color selections on a color terminal.

3. Specify session defaults, such as the default dsname high-level qualifier, and enable
the jump function.

4. Select a profile to be used and tailor user profiles for all your different libraries and
environments.

Specifying PF Key Definitions
XPEDITER/TSO has two sets of PF keys. When using XPEDITER/TSO, you use ISPF PF key
settings. These PF keys are used throughout the product, except when you are within a
debugging session. Then you use XPEDITER debugging session PF keys.

To modify the XPEDITER debugging session PF key settings, select option 1 (TEST PF
KEYS). The XPEDITER PF Key Definitions and Labels - Primary Keys screen shown in

 ------------------------ XPEDITER/TSO - DEFAULTS MENU -----------------------
 OPTION ===>

 1 TEST PF KEYS - Specify test session PF keys
 2 COLORS - Specify color defaults
 3 OTHERS - Specify other default values
 4 PROFILE - Specify current profile name

 Press ENTER to Process or Enter END Command to Terminate

D-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure D-2 is displayed. For terminals with 24 PF keys, press Enter to display the
XPEDITER PF Key Definitions and Labels - Alternate Keys screen shown in Figure D-3.

Note: Depending on the number of PF keys established for your terminal, the
appropriate set of PF keys is displayed on these screens.

Figure D-2. XPEDITER PF Key Definitions and Labels - Primary Keys Screen

Figure D-3. XPEDITER PF Key Definitions and Labels - Alternate Keys Screen

Changes can be made to the PF key designations by typing over the appropriate fields. PF
keys can also be labeled to have a descriptive name as well as the actual command
mapped to the key.

 ------------ XPEDITER PF KEY DEFINITIONS AND LABELS - PRIMARY KEYS ------------
 COMMAND ===>

 NUMBER OF PF KEYS ===> 24 TERMINAL TYPE ===> 3278

 PF1 ===> HELP
 PF2 ===> PEEK CSR
 PF3 ===> END
 PF4 ===> EXIT
 PF5 ===> FIND
 PF6 ===> LOCATE *
 PF7 ===> UP
 PF8 ===> DOWN
 PF9 ===> GO 1
 PF10 ===> LEFT
 PF11 ===> RIGHT
 PF12 ===> GO

 PF1 LABEL ===> PF2 LABEL ===> PF3 LABEL ===>
 PF4 LABEL ===> PF5 LABEL ===> PF6 LABEL ===>
 PF7 LABEL ===> PF8 LABEL ===> PF9 LABEL ===>
 PF10 LABEL ===> PF11 LABEL ===> PF12 LABEL ===>

 Press ENTER key to display alternate keys. Enter END command to exit.

 ------------ XPEDITER PF KEY DEFINITIONS AND LABELS - ALTERNATE KEYS ----------
 COMMAND ===>

 NOTE: Definitions and labels below apply only to terminals with 24 PF keys.

 PF13 ===> HELP
 PF14 ===> FIND CSR
 PF15 ===> END
 PF16 ===> EXIT
 PF17 ===> FIND IND
 PF18 ===> LOCATE *
 PF19 ===> UP
 PF20 ===> DOWN
 PF21 ===> GO 1
 PF22 ===> DLEFT
 PF23 ===> DRIGHT
 PF24 ===> GO

 PF13 LABEL ===> PF14 LABEL ===> PF15 LABEL ===>
 PF16 LABEL ===> PF17 LABEL ===> PF18 LABEL ===>
 PF19 LABEL ===> PF20 LABEL ===> PF21 LABEL ===>
 PF22 LABEL ===> PF23 LABEL ===> PF24 LABEL ===>

 Press ENTER key to display primary keys. Enter END command to exit.

Specifying Session Defaults D-3
Specifying Screen Colors
The next option on the Defaults Menu gives you color defaults for use with a color
terminal. A full range of colors is offered for the various display areas on the screen,
whether in ISPF or the Source display. Both intensity and highlight choices are available
for each color. This option lets you change color, highlight, and intensity on all ISPF,
source, and tutorial screens.

Select option 2 (COLORS) from the Defaults Menu to access the ISPF Color Defaults
screen shown in Figure D-4. You can also enter the COLOR command anywhere within
XPEDITER/TSO to invoke this screen.

Figure D-4. ISPF Color Defaults Screen

The entry values are listed on the screen. Note that color, highlight, and intensity
choices can be indicated by the first character.

The following indicates some guidelines regarding the use of color:

• Colors take affect only on a 3279-B or ISPF-supported 7-color terminal.

• Enter the ON or DEMO command on the Color Default screens for an example of its
use.

• Enter the OFF or RESTORE command to restore standard ISPF color settings.

• Intensity is ignored on IBM color terminals.

• Color is ignored on monochrome terminals.

Entering S or SOURCE from the ISPF Color Defaults screen invokes the Source Color
Defaults/1 screen, shown in Figure D-5. You can also enter the COLOR S command
anywhere within XPEDITER/TSO, except within a dialog debugging session, to invoke
this screen.

There are three screens for source color defaults. Press Enter without any changes to cycle
through the screens.

XPEDITER/TSO --------------------- ISPF COLOR DEFAULTS (0.2) ------------------
COMMAND ===>

 PRIMARY COMMANDS : Source (color defaults) Tutorial (color defaults)
 COLOR Choices: White Red Blue Green Pink Yellow Turq
 HIGHLIGHT Choices: Uscore Blink Reverse None
 INTENSITY Choices: High Low

 COLOR HIGHLIGHT INTENSITY
 Informative Text ===> BLUE NONE LOW
 Informative Text Hilite ===> WHITE NONE HIGH
 Input Field Title ===> BLUE NONE LOW
 Input Field Pointer ===> WHITE NONE HIGH
 Data Input Field ===> RED NONE HIGH
 Panel Title ===> WHITE NONE HIGH
 COMMAND Title ===> WHITE NONE HIGH
 COMMAND Input Field ===> RED NONE HIGH
 Message/Note Text ===> BLUE NONE LOW
 Message/Note Hilite ===> WHITE NONE HIGH
 Menu Options ===> WHITE NONE HIGH
 Menu Option Text ===> BLUE NONE LOW
 Field in Error ===> RED NONE HIGH

 Press ENTER to Save or END To Return

D-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure D-5. Source Color Defaults/1 Screen

Typing ON or DEMO on the Source Color Defaults screen causes the COLOR,
HIGHLIGHT, and INTENSITY fields to automatically change (refer to Figure D-6 below) to
the following:

Figure D-6. Changing Source Color Defaults

Typing OFF or RESTORE causes the COLOR, HIGHLIGHT, and INTENSITY fields on the
Source Color Defaults/1 screen to return to the default values shown in Figure D-7.

Entering T or TUTORIAL from the ISPF Color Defaults screen invokes the Tutorial Color
Defaults screen, shown in Figure D-8. You can also enter the COLOR T command
anywhere within XPEDITER/TSO to invoke this screen.

XPEDITER/TSO ------------ SOURCE COLOR DEFAULTS/1 (0.2) -----------------------
COMMAND ===>

 COLOR Choices: White Red Blue Green Pink Yellow Turq
 HIGHLIGHT Choices: Uscore Blink Reverse None
 INTENSITY Choices: High Low

 COLOR HIGHLIGHT INTENSITY
 Panel Title ===> BLUE NONE LOW
 Current Module Name ===> WHITE NONE HIGH
 COMMAND Title ===> BLUE NONE LOW
 COMMAND Input Field ===> RED NONE HIGH
 Input Field Pointer ===> WHITE NONE HIGH
 Background Areas ===> BLUE NONE LOW
 Informational Message ===> WHITE NONE HIGH
 Error Messages ===> WHITE NONE HIGH
 Informative Test ===> BLUE NONE LOW
 Informative Test Highlight ===> WHITE NONE HIGH
 Separator/Marker Lines ===> BLUE NONE LOW

 Press ENTER to Save or END To Return

 COLOR HIGHLIGHT INTENSITY
 Panel Title ===> YELLOW REVERSE LOW
 Current Module Name ===> TURQ REVERSE HIGH
 COMMAND Title ===> TURQ REVERSE LOW
 COMMAND Input Field ===> GREEN REVERSE HIGH
 Input Field Pointer ===> WHITE REVERSE HIGH
 Background Areas ===> BLUE REVERSE LOW
 Informational Message ===> TURQ REVERSE HIGH
 Error Messages ===> PINK REVERSE HIGH
 Informative Test ===> YELLOW REVERSE LOW
 Informative Test Highlight ===> TURQ REVERSE HIGH
 Separator/Marker Lines ===> BLUE REVERSE LOW

 Press ENTER to Save or END To Return

Specifying Session Defaults D-5
Figure D-7. Tutorial Color Defaults Screen

Typing ON or DEMO in the Tutorial Color Defaults screen (Figure D-7) causes the
COLOR, HIGHLIGHT, and INTENSITY fields to automatically change (refer to Figure D-8
below) to the following:

Figure D-8. Changing Tutorial Color Defaults

Typing OFF or RESTORE causes the COLOR, HIGHLIGHT, and INTENSITY fields on the
Changing Tutorial Color Defaults screen (Figure D-8) to return to the default values
shown in Figure D-7.

Specifying Other Default Values
Select option 3 (OTHERS) from the Defaults Menu to access the Others screen for
specifying other default values as shown in Figure D-9. This screen does two things:

1. Sets up a default prefix for your dsname high-level qualifier that will be
automatically appended to all dsnames not enclosed in quotes.

2. Enables the jump function.

XPEDITER/TSO ----------- TUTORIAL COLOR DEFAULTS (0.2) ------------------------
COMMAND ===>

 COLOR Choices: White Red Blue Green Pink Yellow Turq
 HIGHLIGHT Choices: Uscore Blink Reverse None
 INTENSITY Choices: High Low

 COLOR HIGHLIGHT INTENSITY
 Informative Text ===> BLUE NONE LOW
 Informative Text Hilite ===> WHITE NONE HIGH
 Panel Title ===> WHITE NONE HIGH
 COMMAND Title ===> WHITE NONE HIGH
 COMMAND Input Field ===> RED NONE HIGH
 Panel Subtitle ===> WHITE NONE HIGH

 Press ENTER to Save or END to Return

 COLOR HIGHLIGHT INTENSITY
Informative Text ===> YELLOW REVERSE LOW
Informative Text Hilite ===> TURQ REVERSE HIGH
Panel Title ===> WHITE REVERSE HIGH
COMMAND Title ===> TURQ REVERSE HIGH
COMMAND Input Field ===> GREEN REVERSE HIGH
Panel Subtitle ===> PINK REVERSE HIGH

 Press ENTER to Save or END To Return

D-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure D-9. Specifying Other Default Values

The fields on the Others screen are as follows:

DSNAME HIGH-LEVEL QUALIFIER

The string entered here is automatically prefixed to any dsname not enclosed in
quotes. Your user ID is the default value prefilled in this field.

If your site requires a high-level qualifier that is not your user ID, enter that qualifier
in the Prefix field. This will become your default high-level qualifier. Do not blank
out this field. The prefix is used as the high-level qualifier in names generated by
XPEDITER/TSO for the log and script datasets. Therefore, unless you explicitly name
them, any attempt to allocate these datasets will fail. Also, in many sites, a dataset
cannot be cataloged without a user ID.

ENABLE JUMP FUNCTION

Turning on the jump function (YES, the default) lets you move from one screen to
another without passing through the Primary Menu. The jump function is the same
as that provided inside ISPF.

The equal sign (=) is used to take you to a Primary Menu. Entering =2 takes you to
option 2 of the Primary Menu. If the jump function is turned on (enabled) and the
equal sign convention is used, you are referred to the XPEDITER/TSO Primary Menu.
If the jump function is off, you are referred to the ISPF Primary Menu.

Specifying User Profiles
The user profile contains all the changes you make to the XPEDITER defaults. This
includes installation defaults established by your system programming staff, and most
importantly, environment parameters and setup options for your debugging session.

Select option 0 (Defaults) from the Primary Menu to display the Defaults Menu. Select
option 4 (PROFILE) from the Defaults Menu to access the XPEDITER Profile screen shown
in Figure D-10. This screen can also be reached by entering a question mark (?) as a
profile identifier on the Primary Menu or by using the PROFILE command from a test
screen. Refer to “Using the PROFILE Command” on page D-8 for additional information.
This screen lets you:

• Switch to a new profile

--------------------------- XPEDITER/TSO - OTHERS -----------------------------
COMMAND ===>

DSNAME HIGH-LEVEL QUALIFIER: (Appended to all DSNAMEs not enclosed in quotes)
 Prefix ===> ASJUSR1

ENABLE JUMP FUNCTION: (Allow menu jumps within XPEDITER/TSO screens)
 Enable ===> YES

 Press ENTER to Process or Enter END Command to Terminate

Specifying Session Defaults D-7
• Change the description of a profile
• Make a particular profile current
• Delete a profile
• Copy a profile
• Rename a profile
• Use a profile

Figure D-10. XPEDITER Profile Screen

The Profile screen has a fixed (body) area and a scrollable area. The fixed body area has a
command line, a list of available commands, and the Current Profile.

You can perform several operations in this area.

1. Use the MERGE command to merge another user’s profile into your profile library or
use the LOCATE command to reposition the scrollable area.

2. Use the PROFILE field to:

– Switch to a new profile: To do this, type over the profile identifier with a new
identifier. The identifier can be any 8-character name or number. When you
change the profile specified in this field, the profile change becomes effective
immediately. This lets you execute debugging sessions with different
environments, load libraries, levels of systems software, and so on.

– Change the description of a profile: To do this, type over the DESCRIPTION
field. You can combine this with selecting a new profile, in which case, the
description is associated with the new profile.

The scrollable area of the screen has a line for each existing profile and includes a line
command area. An asterisk (*) preceding a profile identifier indicates the current profile.
You can use the following line commands:

• S (Select)—to make a particular profile current. You can combine this command with
a copy function by entering the identifier of the new profile in the NEW NAME field.
This makes the new profile the current profile.

• D (Delete)—to delete a profile.

• C (Copy)—to copy a profile. Enter the identifier of the new profile in the NEW NAME
field. Press Enter, and a new profile with the given identifier is created. If you also
type over the DESCRIPTION field, the new description goes only with the new
profile. If the new profile identifier already exists, you must verify that you really
want to overwrite the profile.

• R (Rename)—to rename a profile. Enter the new profile identifier in the NEW NAME
field. You can also change the description by typing over the DESCRIPTION field.
Press Enter, and the profile is renamed.

------------------------ XPEDITER/TSO - PROFILE (0.4) -----------------------
COMMAND ===> SCROLL ===> PAGE

LINE COMMANDS: S (Select) D (Delete) C (Copy) R (Rename) U (Use)
PRIMARY COMMANDS: MERGE (copy profiles) Locate (reposition table)
 CURRENT
 PROFILE ===> TRIMAINP > Test using the PL/I IVP program <

CMD PROFILE NEW NAME DESCRIPTION

 _ TRIMAIN > Test using the COBOL IVP program <
 _ TRIMAINA > Test using the HL Assembler IVP program <
 _ TRIMAINC > Test using the C IVP program <
 _ * TRIMAINP > Test using the PL/I IVP program <
 _ TRIMAIN2 > Test using the COBOL IVP program w/internal sort <
 _ TRIMPP > Test using the COBOL IVP program for IMS MPP <
 _ TRIPMPP > Test using the PL/I IVP program for IMS MPP <
******************************* Bottom of data ********************************

D-8 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
• U (Use)—to use a profile. This line command takes you directly to XPEDITER/TSO
with the selected profile.

Using the MERGE Command

The MERGE command copies profiles from an alternate profile dataset to the current
profile dataset. See “Selecting Alternate Profiles (MERGE PROFILE)” on page E-5 for more
information.

Using the LOCATE Command

The LOCATE command positions the list of profiles to the profile name preceding the
name you specify. L and LOC are acceptable abbreviations for the LOCATE command.

Using the PROFILE Command

The PROFILE command is available on the test screens to change the current profile
without leaving the test screen itself. You can also use the PROFILE command from the
Primary Menu. The syntax of the command is:

PROFile {xxxxxxxx}
 {? }

Where xxxxxxxx is the profile identifier. Use this command as follows:

1. Enter the command and a profile identifier to change to another profile. If the
profile identifier does not currently exist, the XPEDITER Profile screen shown in
Figure D-10 on page D-7 is displayed so that you can enter the description for the
new profile or select a different profile identifier.

2. Enter the command without an identifier or with a question mark (?) to go to the
XPEDITER Profile screen shown in Figure D-10 on page D-7.

When you leave the Profile screen, you are returned to the test screen, and the profile
you selected is displayed in the message area. If you selected a new profile (i.e., a profile
that did not currently exist), the Environments Menu is displayed.

Displaying Test Session Settings
You can use SET commands to override a number of XPEDITER/TSO test session defaults
in order to achieve your debugging objectives. For example, you can control whether or
not to intercept program abends, control the speed of program trace, or control the way
XPEDITER/TSO deals with modules. You can control numerous XPEDITER functions
including display settings, log options, and PF key settings. For full descriptions of all SET
command parameters, refer to the XPEDITER/TSO and XPEDITER/IMS Reference Manual.

The current status of your test session settings can be displayed by entering SHOW SETS
or SHOW OPTIONS on the command line. Based on your current settings and testing
environment, XPEDITER will display a list similar to the one shown in Figure D-11
through Figure D-15. Some values are set only for the duration of the test session, while
others are maintained across test sessions. A few values are environmental settings
implemented by other methods and have no corresponding SET command.

All the settings that affect module management must be in effect before loading your
program into memory. This can be done by editing an INCLUDE script that contains the
SET commands and specifying it on the test screen as an initial script before entering the
test session.

Specifying Session Defaults D-9
Figure D-11. SHOW SET/OPTIONS First Screen

Figure D-12. SHOW SET/OPTIONS Second Screen

 ------------------------- XPEDITER/TSO - SHOW --------------------------------
 COMMAND ===>
 SCROLL ===> CSR
 PROGRAM: TRIMAIN2 MODULE: TRIMAIN2 COMP DATE: 09/30/1997 COMP TIME:11:39:04
 --- Before TRIMAIN2 ->
********************************* TOP OF DATA **********************************
 ABNDEXIT ===> ON
 AUTOCAN ===> OFF
 AUTOCLOS ===> OFF
 AUTOKEEP ===> ON
 AUTOSCRL ===> OFF
 BRCOV ===> OFF
 BRKPOINT ===> SVC
 CAPS ===> ON
 CBLTRAP ===> ON
 CMDSIZE ===> 2
 COLS ===> OFF
 CONFIRM ===> ON
 DATAFIND ===> ALL
 DATETIME ===> ON
 DBCS ===> OFF
 DELAY ===> 0
 DUMP ===> OFF
 DYNTRAP ===> ON

 ------------------------- XPEDITER/TSO - SHOW --------------------------------
 COMMAND ===>
 SCROLL ===> CSR
 PROGRAM: TRIMAIN2 MODULE: TRIMAIN2 COMP DATE: 09/30/1997 COMP TIME:11:39:04
 --- Before TRIMAIN2 ->
 ESPIE ===> ON
 GEN ===> OFF
 HANDLER ===> 0
 HEXMODE ===> OFF
 LANGUAGE ===> ENGLISH
 LETRAP ===> ON
 LOG ===> ON
 LOG AUTOKEEP ===> ON
 LOG FIND ===> OFF
 LOG KEEP ===> ON
 LOG MEMORY ===> ON
 LOG PEEK ===> ON
 LOG VERIFY ===> ON
 LOGSIZE ===> 80
 LOWCASE ===> ASIS
 MONITOR ===> OFF
 NESTED ===> 00099
 NOINIT ===> OFF
 NONDISP ===> .

D-10 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure D-13. SHOW SET/OPTIONS Third Screen

Figure D-14. SHOW SET/OPTIONS Fourth Screen

Figure D-15. SHOW SET/OPTIONS Fifth Screen

 ------------------------- XPEDITER/TSO - SHOW --------------------------------
 COMMAND ===>
 SCROLL ===> CSR
 PROGRAM: TRIMAIN2 MODULE: TRIMAIN2 COMP DATE: 09/30/1997 COMP TIME:11:39:04
 --- Before TRIMAIN2 ->
 PFK1 ===> HELP
 PFK2 ===> PEEK CSR
 PFK3 ===> END
 PFK4 ===> EXIT
 PFK5 ===> FIND
 PFK6 ===> LOCATE *
 PFK7 ===> UP
 PFK8 ===> DOWN
 PFK9 ===> GO 1
 PFK10 ===> LEFT
 PFK11 ===> RIGHT
 PFK12 ===> GO
 PFK13 ===> HELP
 PFK14 ===> FIND CSR
 PFK15 ===> END
 PFK16 ===> EXIT
 PFK17 ===> FIND IND
 PFK18 ===> LOCATE *
 PFK19 ===> UP

 ------------------------- XPEDITER/TSO - SHOW --------------------------------
 COMMAND ===>
 SCROLL ===> CSR
 PROGRAM: TRIMAIN2 MODULE: TRIMAIN2 COMP DATE: 09/30/1997 COMP TIME:11:39:04
 --- Before TRIMAIN2 ->
 PFK20 ===> DOWN
 PFK21 ===> GO 1
 PFK22 ===> DLEFT
 PFK23 ===> DRIGHT
 PFK24 ===> GO
 PREINIT ===> OFF
 REFRESH ===> OFF
 REVSIZE ===> 1M
 RTEREUS ===> ALLOWED
 STATIC ===> IGNORE0
 TEMPLATE ===> ON
 TRANSLAT ===> ON
 UNCHNGED ===> ON
 USERSVC ===> 240
 TRAPBP ===> OFF
 SVCBP ===> ON
 SVCTCBU ===> OFF
 WINDOW SOURCE ===> MIN: 3
 WINDOW KEEP ===> 5

 ------------------------- XPEDITER/TSO - SHOW --------------------------------
 COMMAND ===>
 SCROLL ===> CSR
 PROGRAM: TRIMAIN2 MODULE: TRIMAIN2 COMP DATE: 09/30/1997 COMP TIME:11:39:04
 --- Before TRIMAIN2 ->
 WINDOW AUTOKEEP ===> 0
 TRANSFER ===>
 DYNAMIC MODULES ===>
 EXCLUDE MODULES ===>
 NOCANCEL MODULES ===>
 SKIPPED MODULES ===>
 TRACED MODULES ===>
 DDIGNORE AT CLOSE ===>
******************************** BOTTOM OF DATA ********************************

E-1

Appendix A.Appendix E.

EXPEDITER/TSO Utilities App E

The XPEDITER/TSO utility functions are accessed by selecting option 5 on the Primary
Menu. The XPEDITER/TSO Utilities Menu shown in Figure E-1 is displayed. From this
menu, you can select the following functions:

1. Display the memory available for debugging (REGION SIZE).

2. Display the ddnames and dsnames currently allocated to your TSO session (LIST
ALLOCATES).

3. Create, browse, delete, lock/unlock, display, and list DDIO files (DDIO FILE
FACILITY).

4. Merge profiles from other user IDs (MERGE).

Figure E-1. XPEDITER/TSO Utilities Menu

Displaying Available Memory (REGION SIZE)
Selecting option 1 (REGION SIZE) on the Utilities Menu will display an example of a con-
densed screen of memory and storage specifications available for debugging. This menu
screen is similar to the screen displayed when you enter a SHOW REGION command
from within an XPEDITER/TSO debugging session. The condensed storage specification
screen is displayed in Figure E-2 on page E-2.

------------------------- XPEDITER/TSO - UTILITIES MENU ------------------------
OPTION ===>

 1 REGION SIZE - Display memory available for testing
 2 LIST ALLOCATES - Display files allocated to your test session
 3 DDIO FILE FACILITY - Create/Format/Copy/Export and list DDIO file(s)
 5 CONVERT PROFILE - Convert XPEDITER/TSO release 5.1 user profiles
 6 CONVERT INCLUDE - Convert include scripts to new qualification rules
 7 MERGE - Merge profiles from alternate users

 Press ENTER to process or enter END command to terminate

E-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure E-2. XPEDITER/TSO Storage Specifications

The following guidelines give you some idea as to what the memory requirements are for
the different XPEDITER/TSO execution environments:

If you are using DATACOM/DB, IDMS/DB, or System 2000, the recommended memory
is 2,000,000 bytes.

The listed figures are approximate; your actual memory requirements will vary depend-
ing on the size of the program being debugged. The amount of memory required by
XPEDITER/TSO is related to the number of statements in each program that has a DDIO
loaded into memory.

Displaying File Allocations (LIST ALLOCATES)
Option 2 (LIST ALLOCATES) on the Utilities Menu displays the files allocated to your
TSO debugging session. The same display can be reached by entering the ALC command
from within an XPEDITER/TSO debugging session. The following line commands are
available, entered in the SEL column:

BATCH 1,500,000 bytes

TSO 1,500,000 bytes

IMS 2,000,000 bytes

BTS 2,500,000 bytes

DB2 2,000,000 bytes

 .---.
 | Percent TSO storage used |
 | ----10---20---30---40---50---60---70---80---90--- |
 | [] |
 | <16m ***** |
 | >16m * |
 | Current usage |
 | 0.44 Mb Below (private) |
 | 0.43 Mb Below (system) |
 | 0.71 Mb Above (private) |
 | 9.21 Mb Above (system) |
 | |
 | System information |
 | Region size below the line ====> 4.06 Mb |
 | Region size above the line ====> 32.00 Mb |
 |___|

A Concatenation destination (After)

B Browse individual dataset

C Concatenation source (Copy)

D Deconcatenate request

E Edit individual dataset

S Dataset status

U Unallocation request

XPEDITER/TSO Utilities E-3
The SHOW ALLOCATES command displays the same information in essentially the same
format, but the line commands are not available.

Figure E-3 on page E-3 is a sample of the output from this function.

Figure E-3. List Allocates Screen

DDIO File Facility
A DDIO file is required by XPEDITER during compile time to store source listings con-
taining the information necessary for XPEDITER/TSO to reference various elements of
your program during testing.

Note: In some cases, a DDIO file was created and formatted during the installation of
Compuware’s Shared Services. If not, you can use this utility to create a DDIO
file.

Option 3 (DDIO FILE FACILITY) on the Utilities Menu invokes the CSS Utilities Source
Listing File Facility. This facility enables you to:

• create and format a DDIO file, a shared directory, or an LP database
• obtain format information about the file
• copy, move, export, or import files
• obtain a list of file members
• browse, delete, print, lock, or unlock members from a list of file members.

See the Compuware Shared Services User/Reference Guide for more information.

CONVERT PROFILE
When you select option 5 on the Utilities Menu and press Enter, the CONVERT PROFILE
Release 5.1 screen shown in Figure E-4 on page E-4 is displayed.

This utility converts XPEDITER/TSO Release 5.1 user profiles to current profile handling
methodology. This will allow compatibility for future releases.

Enter ALL on the command line to convert all Release 5.1 profiles or enter the following
for selected profiles:

----------------------- XPEDITER/TSO - LIST ALLOCATES ------- ROW 1 TO 13 OF 89
COMMAND ===> SCROLL ===> CSR

SEL DDNAME DSNAME (fully qualified) ATTR STA DISP

 -------- --- ---
 STEPLIB SYS1.DUMMY.LINKLIB IA SHR KEEP
 SYSPRINT (TERM) NULLFILE A NEW DELETE
 SYSTERM (TERM) NULLFILE A NEW DELETE
 SYSLBC SYS1.BRODCAST VD SHR KEEP
 SYS0003 CATALOG.TSO.USRCAT I VD SHR KEEP
 ISPPROF ASJUSR1.ISP.ISPPROF I VD SHR KEEP
 SYSPROC SYS1.CMDPROC C A D SHR KEEP
 +1 ADSA99XP.CLIST C A D SHR KEEP
 +2 SYS2.XPEDITER.V7R0M0.CLIST C A D SHR KEEP
 SYSHELP SYS1.HELP C A D SHR KEEP
 ISPLLIB SYS2.XPEDITER.V7R0M0.LOADLIB CIA D SHR KEEP
 +1 SYS2.PROD.ISPLLIB CIA D SHR

E-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Profile to Convert:

 Profile ===> Enter the number (0 - 9) of the prefix to be copied.
 Test Type ===> Enter the number (1 - 11) of the testing environment.

Profile to Create:

 Profile ===> Enter the name of the new profile being created.

Other Options:

 Base Data ===> YES or NO to copy basic user data (color, JOB cards, etc.).

The CONVERT PROFILE Release 5.1 screen (refer to Figure E-4 on page E-4) is displayed
on the following page:

Figure E-4. CONVERT PROFILE Release 5.1 Screen

CONVERT INCLUDE
When you select option 6 on the Utilities Menu, the CONVERT INCLUDE screen is dis-
played.

Use this utility to convert INCLUDE SCRIPT dataset members (created prior to
XPEDITER/TSO Release 6.3) to the new qualification rule. All references of delimiter ’.’
used for module qualification will be changed to ’:’.

The following examples use TRITST for module qualification:

 Before Conversion After Conversion
 ------------------------ -----------------------
 KEEP TRITST.TST-REC KEEP TRITST:TST-REC
 SKIP TRITST.18 SKIP TRITST:18
 AFTER TRITST. AFTER TRITST:

 Preparation ===> Specify environment for which processing is to take place.

 Input Dsname ===> Specify an INCLUDE SCRIPT dataset to convert.

 --------------------- XPEDITER/TSO - CONVERT 5.1 PROFILE --------------------
 COMMAND ===>

 COMMANDS: ALL - All 5.1 profiles (names and descriptors will be generated)

 Profile to Convert:

 Profile ===> (Old Profile Number - 0 to 9)
 Test Type ===> (Test Type to Get Data From - 1 to 11)

 Profile to Create: Description For New Profile:

 Profile ===> > <

 Other Options:

 Base Data ===> YES (Convert Basic User Data - YES or NO)

 Press ENTER to Process or Enter END Command to Terminate

XPEDITER/TSO Utilities E-5
 Output Dsname ===> Specify a cataloged partitioned dataset to copy
 converted INCLUDE SCRIPT members to. The Dsname
 may also be the same as the Input Dsname, thus
 updating original members if so desired.

 Jobcard Information: Specify Job statements for BATCH and EDITJCL preparation
s.

The CONVERT INCLUDE screen (Figure E-5 on page E-5) is displayed on the following
page:

Figure E-5. CONVERT INCLUDE Screen

Selecting Alternate Profiles (MERGE PROFILE)
Option 7 on the Utilities Menu merges profiles from other user IDs into your personal
profile. The Select Alternate Profiles screen shown in Figure E-6 is displayed below.

Figure E-6. Select Alternate Profiles Screen

-------------------- XPEDITER/TSO - CONVERT INCLUDE ----------------------------
 COMMAND ===>

 Preparation ===> BATCH (Batch/Editjcl/Foreground)

 Input Dsname ===>
 Output Dsname ===>

 Jobcard Information:
 ===> //MFHABC0B JOB (ACCOUNT),'NAME',CLASS=A,MSGCLASS=X,NOTIFY=MFHABC0
 ===> //*
 ===> //*
 ===> //*

 Press ENTER to process or enter END command to terminate

------------------ XPEDITER/TSO - SELECT ALTERNATE PROFILES --------------------
COMMAND ===>

 Enter the dataset name of the input ISPF user profiles to select.

 DSNAME ===>

 Enter END command to Cancel Without Updating the Defaults

E-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
The option on this screen is:

DSNAME

Enter the name of the ISPF profile dataset in the DSNAME field to identify the source
of the XPEDITER/TSO profiles. Entering a dataset name results in the display of the
Merge Profile screen—a scrollable list from which you can make your selection.

After you have typed the name of the ISPF profile dataset in the DSNAME field, press
Enter to display the Merge Profile screen (as shown in Figure E-7 on page E-6).

Figure E-7. MERGE PROFILE Screen

The list provided on the Merge Profile screen (Figure E-7) displayed above shows the
alternate profiles that exist in another user’s XPEDITER profile table. To merge one or
more of these profiles into your profile, use the Select command. By using SELECT, you
can change the profile name and/or description by simply typing new values.

 ------------------- XPEDITER/TSO - MERGE PROFILE (3.6) ------------------------
 COMMAND ===> SCROLL ===> PAGE

 LINE COMMANDS: S

 CMD PROFILE NEW NAME DESCRIPTION

 _ CPDRIVER ________ > Command Processor Driver <
 _ DEFAULT ________ > *** NO DESCRIPTION *** <
 _ DEF2 ________ > *** NO DESCRIPTION *** <
 _ FAXGATE ________ > *** NO DESCRIPTION *** <
 _ PLIV230 ________ > TESTING PL/I V2R3 PROGRAMS <
 ******************************* Bottom of data ********************************

F-1

Appendix A.Appendix F.

FBinding the Application Plan or Package App F

If the XPEDITER for DB2 Extension and File-AID for DB2 are installed at your site, and
you want to use either product during the debugging session, you must bind your pro-
gram application plan or package with the File-AID for DB2 DBRM if any of the following
apply:

1. The program executes statically compiled SQL statements. If the program executes
only dynamically inserted SQL statements, you can either bind your application plan
or package with File-AID for DB2 or use the File-AID for DB2 default plan in place of
your application plan or package.

2. The program is executed in the IMS environment.

Bind Facility Menu
Select option 1 (PREPARE) from the Primary Menu to display the Program Preparation
Menu. Then select option 3 (BIND FACILITY MENU) from the Program Preparation Menu
to display the Bind Facility Menu shown in Figure F-1.

Figure F-1. Bind Facility Menu

The Bind Facility Menu has the following options:

1 BIND PLAN FACILITY

Use this facility to add or replace DB2 plans. Refer to “Bind Plan Facility Screen” on
page F-2.

2 BIND PACKAGE FACILITY

Use this facility to create DB2 packages. Refer to “Bind Package Facility Screen” on
page F-7.

--------------------- XPEDITER/TSO - BIND FACILITY MENU ---------------------
OPTION ===>

 1 BIND PLAN FACILITY - Bind application plan
 2 BIND PACKAGE FACILITY - Bind package

 For DB2 long name support:

 3 BIND PLAN FACILITY - Bind application plan
 4 BIND PACKAGE FACILITY - Bind package

 Press ENTER to process or enter END command to terminate

F-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
3 BIND PLAN FACILITY

Use this facility to add or replace DB2 plans if you are using DB2 8.1 or above and
require support for 128-byte long names. Refer to “Bind Plan Facility Screen for Long
Names” on page F-9.

4 BIND PACKAGE FACILITY

Use this facility to create DB2 packages if you are using DB2 8.1 or above and require
support for 128-byte long names. Refer to “Bind Package Facility Screen” on page
F-14.

Bind Plan Facility Screen
Select option 1 (BIND PLAN FACILITY) from the Bind Facility Menu to display the Bind
Plan Facility screen shown in Figure F-2. To perform the bind function, you must have
DB2 authority.

The valid commands on this screen are:

SETUP

Displays the DBRM Libraries screen, which is used to specify the DBRM members and
datasets you want to use as input to the bind function. Refer to “DBRM Libraries
Screen” on page F-5 for a description of this screen.

RESTORE

Reinstates all installed default values (on all setup and installation screens) to the
values assigned during installation.

Figure F-2. Bind Plan Facility Screen

The values shown in Figure F-2 are the recommended values, which will provide better
performance than the other listed options.

When you press Enter from this screen, the bind operation begins. You are binding the
File-AID for DB2 DBRM members with the DBRM member(s) you list in the First DBRM
Member field and on the DBRM Libraries screen (described in “DBRM Libraries Screen”
on page F-5). You do not have to specify the File-AID for DB2 DBRM members because
they are automatically specified by the bind function.

 --------------------- XPEDITER/TSO - BIND PLAN FACILITY ---------------------
 COMMAND ===>
 COMMANDS: SEtup (Display Setup Panel)
 Submit Bind Method ===> EDITJCL (Batch/Editjcl/Foreground)
 DB2 SYSTEM ID ===> (Omit to use assigned default)
 Plan Name ===>

 Use SEtup for additional DBRM members or PKLIST entries
 First DBRM Member ===> Include FADB2 DBRMs? ===> NO (Yes/No)
 First PKLIST Location ===>
 Collection ID ===>
 Package ID ===>

 ACTION on Plan ===> ADD (Add/Replace)
 Retain Authorization ===> (Retain) applies only to Replace
 Validate ===> BIND (Run/Bind)
 Isolation ===> CS (Cs/Rr)
 Flag ===> I (I/W/E/C)
 Acquire ===> USE (Use/Allocate)
 Release ===> COMMIT (Commit/Deallocate)
 Explain ===> NO (Yes/No)
 Owner of Plan ===> (Authorization ID of Plan Owner)
 Qualifier Value ===> (Implicit qualifier)
 Press ENTER to process or enter END command to terminate

Binding the Application Plan or Package F-3
The options on the Bind Plan for FADB2 screen are:

Submit Bind Method

Specify the method to be used to invoke the DB2 command processor. Valid choices
are Batch, Editjcl, and Foreground. If Batch is specified, a job will be submitted to
bind the plan. Specifying Editjcl will invoke the ISPF edit facility with the JCL used
to execute in batch. The JCL and control cards can be modified before submitting or
saving them. If you specify Foreground, the DB2 command processor will be invoked
in the foreground.

DB2 System ID

Specify the non-blank DB2 subsystem name (SSN), recognizable to the DSN
command processor, to use for testing.

If no SSN is specified, the DSNLOAD dataset will not be allocated before the DSN
command is issued. Instead you must have previously allocated the DSNLOAD
dataset to ISPLLIB or in the STEPLIB, LINKLIST, or LPALIB concatenation.

Your plan is saved in the catalog of the specified subsystem.

Plan Name

Required. Specify the DB2 application plan to be used by DB2 to process SQL
statements encountered during program execution. The plan name must follow the
DB2 defined syntax for plan names. Refer to the IBM DB2 Reference Manual for the
correct syntax.

A DB2 application plan is the output from the bind function, which converts the
output from the DB2 precompiler to a usable control structure called an application
plan. During this process, access paths to the data are selected and some
authorization checking is performed. The plan is used by DB2 to process SQL
statements encountered during program execution.

First DBRM Member

Required. Specify the first DBRM to be included in the bind process. If you need to
specify additional DBRM members, enter the SETUP command to access the DBRM
Libraries screen. For details, refer to “DBRM Libraries Screen” on page F-5.

Include FADB2 DBRMs?

This field is only displayed if File-AID for DB2 is installed at your site. Specify whether
or not you want to include the File-AID for DB2 DBRMs in the bind.

First PKLIST Location

Specify the location of the first package list to be included in the bind.

Collection ID

Specify the identifier of the package collection to be included in the bind, following
the DB2 defined syntax for names.

Package ID

Specify the ID of the first package to be included in the bind.

ACTION on Plan

Specify whether the plan is a new plan (Add) or if it is to Replace another plan by the
same name.

Retain Authorization

Use Retain if you specified Replace in the ACTION on Plan field. Otherwise, leave
this field blank.

Validate

Use Bind. For performance reasons, the validation of the plan should be done during
the bind process.

F-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Isolation

Use CS for better performance and reduced lockout situations. Use RR only if you
want to retain locks on read pages until you reach a commit (synchronization) point.

Flag

Indicates the level of messages you want to see resulting from the bind. Specify one
of the following options:

Acquire

Specify one of the following options:

Release

Specify one of the following options:

Explain

Specify Yes to obtain explain information at bind time. If you specify Yes, you must
have access to a Plan_Table in which DB2 can store the information relating to the
SQL calls in your program.

You can allocate a Plan_Table for yourself or use a common Plan_Table.

Owner of Plan

If you want to indicate an owner other than yourself, enter the authorization ID of
that person. If omitted, you are, by default, the owner of the plan.

Qualifier Value

Specify the implicit qualifier related to the bind.

Bind Plan Setup Menu

When you enter SETUP on the Bind Plan Facility screen (Figure F-2), the Bind Plan Setup
Menu shown in Figure F-3 is displayed.

I All messages

W Warning, error, and completion messages

E Only error and completion messages

C Only completion messages

Use To allocate DB2 resources when and as needed.

Allocate To allocate the resources at the time the plan is allocated.

Commit To free up the resources after a commit is successfully executed.

Deallocate To deallocate any resources when the plan is deallocated.

Binding the Application Plan or Package F-5
Figure F-3. Bind Plan Setup Menu

The Bind Plan Setup Menu has the following options:

1 BIND PLAN DBRM SETUP

Select this option to create or update a list of bind member names and the list of
DBRM libraries in which they reside. Refer to “DBRM Libraries Screen” below.

2 BIND PLAN PKLIST SETUP

Use to create or update a list of packages that will be used when binding a plan. Refer
to “Bind Plan PKLIST Setup Screen” on page F-6.

DBRM Libraries Screen

When you enter 1 (BIND PLAN DBRM SETUP) on the Bind Plan Setup Menu, the DBRM
Libraries screen shown in Figure F-4 is displayed. The DBRM Libraries screen is used to
enter the names of the DBRM members and DBRM libraries to be used to bind a DB2
plan. If no DBRM members are entered on this screen, a plan is created that contains the
File-AID for DB2 DBRM members and the DBRM entered in the First DBRM Member field
on the Bind Plan Facility screen.

 -------------------- XPEDITER/TSO - BIND PLAN SETUP MENU --------------------
 OPTION ===>

 1 BIND PLAN DBRM SETUP - Add DBRM members and libraries
 2 BIND PLAN PKLIST SETUP - Add packages to the PKLIST option

 Press ENTER to process or enter END command to terminate

F-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure F-4. DBRM Libraries Screen

The options on the DBRM Libraries screen are:

Members

You can specify one to eight additional DBRM modules to be combined with the File-
AID for DB2 DBRM members when creating DB2 plans. The DBRM modules named in
these fields must be members of the DBRM libraries defined below.

A DBRM module member is one output of a DB2 compile preprocessor. DBRM
modules are combined by the bind process to create plans that are used by DB2 for
processing of program SQL statements. The File-AID for DB2 DBRMs are automatically
included in the bind process, but do not appear in the member list.

User Libraries

Required only if the DBRM members specified are not contained in the list of
installation libraries. You can specify up to four libraries. Normal concatenation rules
are in effect—libraries specified first are searched first, and buffer space for the library
list is determined by the first library specified.

Installation Libraries

The installer entered the dsnames of common DBRM libraries that should be
allocated to any sessions. These libraries are included in the DBRM library list for a
plan that is created using the bind process. You can override the installed default
libraries by specifying new libraries in these fields.

Bind Plan PKLIST Setup Screen

When you enter 2 (BIND PLAN PKLIST SETUP) on the Bind Plan Setup Menu, the Bind
Plan PKLIST Setup screen shown in Figure F-5 on page F-7 is displayed. The Bind Plan
PKLIST Setup screen is used to enter up to 8 packages consisting of location name, collec-
tion ID, and package ID. If more than 8 packages are needed, use the EDITJCL option and
add the additional packages to the DB2 parameter cards.

 ----------------------- XPEDITER/TSO - DBRM LIBRARIES -----------------------
 COMMAND ===>

 Members ===> DBRMMEM2 ===> ===> ===>
 ===> ===> ===> ===>

 User Libraries:
 (1) ===>
 (2) ===>
 (3) ===>
 (4) ===>

 Installation Libraries: (Changes to this list override installed defaults)
 (5) ===> ‘ASJUSR1.PROD5100.DBRMLIB’
 (6) ===>
 (7) ===>
 (8) ===>
 (9) ===>
 (10) ===>
 (11) ===>
 (12) ===>

 Press ENTER or END to return to previous menu

Binding the Application Plan or Package F-7
Figure F-5. Bind Plan PKLIST Setup Screen

The options on the Bind Plan PKLIST Setup screen are:

Location Name

Specify the location of each DB2 package to be included in the bind.

Collection ID

Specify the identifier of each package collection to be included in the bind.

Package ID

Specify the ID of each package to be included in the bind.

Bind Package Facility Screen
Select option 2 (BIND PACKAGE FACILITY) from the Bind Facility Menu to display the
Bind Package Facility screen shown in Figure F-6. To perform the bind function, you must
have DB2 authority.

The only valid command on this screen is RESTORE:

RESTORE

Restores the default values established during installation to all the fields on the
screen.

 ------------------- XPEDITER/TSO - BIND PLAN PKLIST SETUP -------------------
 COMMAND ===>

 Location Name Collection ID Package ID
 ---------------- ------------------ --------
 1)
 2)
 3)
 4)
 5)
 6)
 7)
 8)

 Press ENTER to process or enter END command to terminate

F-8 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure F-6. Bind Package Facility Screen

The values shown in Figure F-6 are the recommended values, which will provide better
performance than the other listed options.

When you press Enter from this screen, the bind operation begins. You are binding the
File-AID for DB2 DBRM members with the DBRM member(s) you list in the DBRM Mem-
ber field and on the DBRM Libraries screen (described in “DBRM Libraries Screen” on
page F-5). You do not have to specify the File-AID for DB2 DBRM members because they
are automatically specified by the bind function.

Some of the options on the Bind Plan for FADB2 screen are described below. The remain-
ing options not covered here are documented in the applicable IBM manuals describing
the bind function.

Submit Bind Method

Specify the method to be used to invoke the DB2 command processor. Valid choices
are Batch, Editjcl, and Foreground. If Batch is specified, a job will be submitted to
bind the plan. Specifying Editjcl will invoke the ISPF edit facility with the JCL used
to execute in batch. The JCL and control cards can be modified before submitting or
saving them. If you specify Foreground, the DB2 command processor will be invoked
in the foreground.

DB2 System ID

Specify the non-blank DB2 subsystem name (SSN), recognizable to the DSN
command processor, to use for testing.

If no SSN is specified, the DSNLOAD dataset will not be allocated before the DSN
command is issued. Instead you must have previously allocated the DSNLOAD
dataset to ISPLLIB or in the STEPLIB, LINKLIST, or LPALIB concatenation.

Your plan is saved in the catalog of the specified subsystem.

Location Name

Optional value used to specify the location of the package for the bind operation.

Collection ID

Required. Specify the identifier of the package collection to be included in the bind,
following the DB2 defined syntax for names.

 -------------------- XPEDITER/TSO - BIND PACKAGE FACILITY -------------------
 COMMAND ===>
 Submit Bind Method ===> EDITJCL (Batch/Editjcl/Foreground)
 DB2 System ID ===> (Omit to use assigned default)

 Location Name ===> Collection ID ===>
 Owner ===> Qualifier ===>

 DBRM Member ===>
 DBRM Library ===>
 Copy Collection ID ===>
 Copy Package ID ===>
 Copyver Version ID ===>
 Action ===> ADD (Add/Replace)
 Replver Version ID ===>
 Currentdata ===> YES (Yes/No)
 Explain ===> NO (Yes/No)
 Flag ===> I (I/W/E/C)
 Validate ===> BIND (Run/Bind)
 Isolation ===> RR (Rr/Rs/Cs/Ur/Nc)
 Release ===> COMMIT (Commit/Deallocate)
 SQLerror ===> NOPACKAGE (Nopackage/Continue)
 Path ===>
 Press ENTER to process or enter END command to terminate

Binding the Application Plan or Package F-9
Owner

Optional value used to specify the owner of the DB2 package.

Qualifier

Optional.

Bind Plan Facility Screen for Long Names
Select option 3 (BIND PLAN FACILITY) from the Bind Facility Menu to display the Bind
Plan Facility screen shown in Figure F-7 and Figure F-8. Choose this option if you are
using DB2 8.1 or above and require support for 128-byte long names. To perform the
bind function, you must have DB2 authority.

The valid commands on this screen are:

SETUP

Displays the DBRM Libraries screen, which is used to specify the DBRM members and
datasets you want to use as input to the bind function. Refer to “DBRM Libraries
Screen” on page F-12 for a description of this screen.

RESTORE

Reinstates all installed default values (on all setup and installation screens) to the
values assigned during installation.

Figure F-7. Bind Plan Facility Screen for Long Names (Top Portion)

--------------------- XPEDITER/TSO - BIND PLAN FACILITY ---------------------
COMMAND ===>
 More: +
COMMANDS: SEtup (Display Setup Panel)
 Submit Bind Method ===> BATCH (Batch/Editjcl/Foreground)
 DB2 SYSTEM ID ===> (Omit to use assigned default)
 Plan Name ===>

 Use SEtup for additional DBRM members or PKLIST entries
 First DBRM Member ===> Include FADB2 DBRMs? ===> NO (Yes/No)
First PKLIST Location ===>

 Collection ID ===>

 Package ID ===>

 ACTION on Plan ===> ADD (Add/Replace)
 Retain Authorization ===> (Retain) applies only to Replace
 Validate ===> BIND (Run/Bind)
 Isolation ===> CS (Cs/Rr)
 Flag ===> I (I/W/E/C)
 Acquire ===> USE (Use/Allocate)

 Press ENTER to process or enter END command to terminate

F-10 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure F-8. Bind Plan Facility Screen for Long Names (Bottom Portion)

The values shown in Figure F-7 and Figure F-8 are the recommended values, which will
provide better performance than the other listed options.

When you press Enter from this screen, the bind operation begins. You are binding the
File-AID for DB2 DBRM members with the DBRM member(s) you list in the First DBRM
Member field and on the DBRM Libraries screen (described in “DBRM Libraries Screen”
on page F-12). You do not have to specify the File-AID for DB2 DBRM members because
they are automatically specified by the bind function.

The options on the Bind Plan for FADB2 screen are:

Submit Bind Method

Specify the method to be used to invoke the DB2 command processor. Valid choices
are Batch, Editjcl, and Foreground. If Batch is specified, a job will be submitted to
bind the plan. Specifying Editjcl will invoke the ISPF edit facility with the JCL used
to execute in batch. The JCL and control cards can be modified before submitting or
saving them. If you specify Foreground, the DB2 command processor will be invoked
in the foreground.

DB2 System ID

Specify the non-blank DB2 subsystem name (SSN), recognizable to the DSN
command processor, to use for testing.

If no SSN is specified, the DSNLOAD dataset will not be allocated before the DSN
command is issued. Instead you must have previously allocated the DSNLOAD
dataset to ISPLLIB or in the STEPLIB, LINKLIST, or LPALIB concatenation.

Your plan is saved in the catalog of the specified subsystem.

Plan Name

Required. Specify the DB2 application plan to be used by DB2 to process SQL
statements encountered during program execution. If you are using DB2 8.1 or
above, the plan name can be up to 128 bytes long. It must follow the DB2 defined
syntax for plan names. Refer to the IBM DB2 Reference Manual for the correct syntax.

A DB2 application plan is the output from the bind function, which converts the
output from the DB2 precompiler to a usable control structure called an application
plan. During this process, access paths to the data are selected and some
authorization checking is performed. The plan is used by DB2 to process SQL
statements encountered during program execution.

--------------------- XPEDITER/TSO - BIND PLAN FACILITY ---------------------
COMMAND ===>
 More: -
 First DBRM Member ===> Include FADB2 DBRMs? ===> NO (Yes/No)
First PKLIST Location ===>

 Collection ID ===>

 Package ID ===>

 ACTION on Plan ===> ADD (Add/Replace)
 Retain Authorization ===> (Retain) applies only to Replace
 Validate ===> BIND (Run/Bind)
 Isolation ===> CS (Cs/Rr)
 Flag ===> I (I/W/E/C)
 Acquire ===> USE (Use/Allocate)
 Release ===> COMMIT (Commit/Deallocate)
 Explain ===> NO (Yes/No)
 Owner of Plan ===>

 Qualifier Value ===>

 Press ENTER to process or enter END command to terminate

Binding the Application Plan or Package F-11
First DBRM Member

Required. Specify the first DBRM to be included in the bind process. If you need to
specify additional DBRM members, enter the SETUP command to access the DBRM
Libraries screen. For details, refer to “DBRM Libraries Screen” on page F-12.

Include FADB2 DBRMs?

This field is only displayed if File-AID for DB2 is installed at your site. Specify whether
or not you want to include the File-AID for DB2 DBRMs in the bind.

First PKLIST Location

Specify the location of the first package list to be included in the bind.

Collection ID

Specify the identifier of the package collection to be included in the bind, following
the DB2 defined syntax for names.

Package ID

Specify the ID of the first package to be included in the bind.

ACTION on Plan

Specify whether the plan is a new plan (Add) or if it is to Replace another plan by the
same name.

Retain Authorization

Use Retain if you specified Replace in the ACTION on Plan field. Otherwise, leave
this field blank.

Validate

Use Bind. For performance reasons, the validation of the plan should be done during
the bind process.

Isolation

Use CS for better performance and reduced lockout situations. Use RR only if you
want to retain locks on read pages until you reach a commit (synchronization) point.

Flag

Indicates the level of messages you want to see resulting from the bind. Specify one
of the following options:

Acquire

Specify one of the following options:

Release

Specify one of the following options:

I All messages

W Warning, error, and completion messages

E Only error and completion messages

C Only completion messages

Use To allocate DB2 resources when and as needed.

Allocate To allocate the resources at the time the plan is allocated.

Commit To free up the resources after a commit is successfully executed.

F-12 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Explain

Specify Yes to obtain explain information at bind time. If you specify Yes, you must
have access to a Plan_Table in which DB2 can store the information relating to the
SQL calls in your program.

You can allocate a Plan_Table for yourself or use a common Plan_Table.

Owner of Plan

If you want to indicate an owner other than yourself, enter the authorization ID of
that person. If omitted, you are, by default, the owner of the plan.

Qualifier Value

Specify the implicit qualifier related to the bind.

Bind Plan Setup Menu

When you enter SETUP on the Bind Plan Facility screen (Figure F-7 and Figure F-8), the
Bind Plan Setup Menu shown in Figure F-9 is displayed.

Figure F-9. Bind Plan Setup Menu

The Bind Plan Setup Menu has the following options:

1 BIND PLAN DBRM SETUP

Select this option to create or update a list of bind member names and the list of
DBRM libraries in which they reside. Refer to “DBRM Libraries Screen” below.

2 BIND PLAN PKLIST SETUP

Use to create or update a list of packages that will be used when binding a plan. Refer
to “Bind Plan PKLIST Setup Screen for Long Names” on page F-13.

DBRM Libraries Screen

When you enter 1 (BIND PLAN DBRM SETUP) on the Bind Plan Setup Menu, the DBRM
Libraries screen shown in Figure F-10 is displayed. The DBRM Libraries screen is used to
enter the names of the DBRM members and DBRM libraries to be used to bind a DB2

Deallocate To deallocate any resources when the plan is deallocated.

 -------------------- XPEDITER/TSO - BIND PLAN SETUP MENU --------------------
 OPTION ===>

 1 BIND PLAN DBRM SETUP - Add DBRM members and libraries
 2 BIND PLAN PKLIST SETUP - Add packages to the PKLIST option

 Press ENTER to process or enter END command to terminate

Binding the Application Plan or Package F-13
plan. If no DBRM members are entered on this screen, a plan is created that contains the
File-AID for DB2 DBRM members and the DBRM entered in the First DBRM Member field
on the Bind Plan Facility screen.

Figure F-10. DBRM Libraries Screen

The options on the DBRM Libraries screen are:

Members

You can specify one to eight additional DBRM modules to be combined with the File-
AID for DB2 DBRM members when creating DB2 plans. The DBRM modules named in
these fields must be members of the DBRM libraries defined below.

A DBRM module member is one output of a DB2 compile preprocessor. DBRM
modules are combined by the bind process to create plans that are used by DB2 for
processing of program SQL statements. The File-AID for DB2 DBRMs are automatically
included in the bind process, but do not appear in the member list.

User Libraries

Required only if the DBRM members specified are not contained in the list of
installation libraries. You can specify up to four libraries. Normal concatenation rules
are in effect—libraries specified first are searched first, and buffer space for the library
list is determined by the first library specified.

Installation Libraries

The installer entered the dsnames of common DBRM libraries that should be
allocated to any sessions. These libraries are included in the DBRM library list for a
plan that is created using the bind process. You can override the installed default
libraries by specifying new libraries in these fields.

Bind Plan PKLIST Setup Screen for Long Names

When you enter 2 (BIND PLAN PKLIST SETUP) on the Bind Plan Setup Menu, the Bind
Plan PKLIST Setup screen for long names shown in Figure F-11 is displayed. The Bind
Plan PKLIST Setup screen is used to enter one or two packages consisting of location
name, collection ID, and package ID. If more than two packages are needed, use the
EDITJCL option and add the additional packages to the DB2 parameter cards.

 ----------------------- XPEDITER/TSO - DBRM LIBRARIES -----------------------
 COMMAND ===>

 Members ===> DBRMMEM2 ===> ===> ===>
 ===> ===> ===> ===>

 User Libraries:
 (1) ===>
 (2) ===>
 (3) ===>
 (4) ===>

 Installation Libraries: (Changes to this list override installed defaults)
 (5) ===> ‘ASJUSR1.PROD5100.DBRMLIB’
 (6) ===>
 (7) ===>
 (8) ===>
 (9) ===>
 (10) ===>
 (11) ===>
 (12) ===>

 Press ENTER or END to return to previous menu

F-14 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure F-11. Bind Plan PKLIST Setup Screen

The options on the Bind Plan PKLIST Setup screen are:

Location Name (1 and 2)

Specify the location of each DB2 package to be included in the bind.

Collection ID (1 and 2)

Specify the identifier of each package collection to be included in the bind.

Package ID (1 and 2)

Specify the ID of each package to be included in the bind.

Bind Package Facility Screen
Select option 4 (BIND PACKAGE FACILITY) from the Bind Facility Menu to display the
Bind Package Facility screen shown in the next three figures. Choose this option if you
are using DB2 8.1 or above and require support for 128-byte long names. To perform the
bind function, you must have DB2 authority.

The only valid command on this screen is RESTORE:

RESTORE

Restores the default values established during installation to all the fields on the
screen.

------------------- XPEDITER/TSO - BIND PLAN PKLIST SETUP -------------------
COMMAND ===>

 Location Name 1 ===>

 Collection ID 1 ===>

 Package ID 1 ===>

 Location Name 2 ===>

 Collection ID 2 ===>

 Package ID 2 ===>

 Press ENTER to process or enter END command to terminate

Binding the Application Plan or Package F-15
Figure F-12. Bind Package Facility Screen (Top Portion)

Figure F-13. Bind Package Facility Screen (Middle Portion)

-------------------- XPEDITER/TSO - BIND PACKAGE FACILITY -------------------
COMMAND ===>
 More: +
Submit Bind Method ===> BATCH (Batch/Editjcl/Foreground)
 DB2 System ID ===> (Omit to use assigned default)

Location Name ===>

Collection ID ===>

 Owner ===>

 Qualifier ===>

 DBRM Member ===>
 DBRM Library ===>
Copy Collection ID ===>

 Copy Package ID ===>

 Copy Version ID ===>

 Press ENTER to process or enter END command to terminate

-------------------- XPEDITER/TSO - BIND PACKAGE FACILITY -------------------
COMMAND ===>
 More: - +
Collection ID ===>

 Owner ===>

 Qualifier ===>

 DBRM Member ===>
 DBRM Library ===>
Copy Collection ID ===>

 Copy Package ID ===>

 Copy Version ID ===>

 Action ===> ADD (Add/Replace)
Replace Version ID ===>

 Currentdata ===> YES (Yes/No)

 Press ENTER to process or enter END command to terminate

F-16 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure F-14. Bind Package Facility Screen (Bottom Portion)

The values shown above are the recommended values, which will provide better perfor-
mance than the other listed options.

When you press Enter from this screen, the bind operation begins. You are binding the
File-AID for DB2 DBRM members with the DBRM member(s) you list in the DBRM Mem-
ber field and on the DBRM Libraries screen (described in “DBRM Libraries Screen” on
page F-12). You do not have to specify the File-AID for DB2 DBRM members because they
are automatically specified by the bind function.

Some of the options on the Bind Plan for FADB2 screen are described below. The remain-
ing options not covered here are documented in the applicable IBM manuals describing
the bind function.

Submit Bind Method

Specify the method to be used to invoke the DB2 command processor. Valid choices
are Batch, Editjcl, and Foreground. If Batch is specified, a job will be submitted to
bind the plan. Specifying Editjcl will invoke the ISPF edit facility with the JCL used
to execute in batch. The JCL and control cards can be modified before submitting or
saving them. If you specify Foreground, the DB2 command processor will be invoked
in the foreground.

DB2 System ID

Specify the non-blank DB2 subsystem name (SSN), recognizable to the DSN
command processor, to use for testing.

If no SSN is specified, the DSNLOAD dataset will not be allocated before the DSN
command is issued. Instead you must have previously allocated the DSNLOAD
dataset to ISPLLIB or in the STEPLIB, LINKLIST, or LPALIB concatenation.

Your plan is saved in the catalog of the specified subsystem.

Location Name

Optional value used to specify the location of the package for the bind operation.

Collection ID

Required. Specify the identifier of the package collection to be included in the bind,
following the DB2 defined syntax for names.

-------------------- XPEDITER/TSO - BIND PACKAGE FACILITY -------------------
COMMAND ===>
 More: -
 Copy Version ID ===>

 Action ===> ADD (Add/Replace)
Replace Version ID ===>

 Currentdata ===> YES (Yes/No)
 Explain ===> NO (Yes/No)
 Flag ===> I (I/W/E/C)
 Validate ===> BIND (Run/Bind)
 Isolation ===> RR (Rr/Rs/Cs/Ur/Nc)
 Release ===> COMMIT (Commit/Deallocate)
 SQLerror ===> NOPACKAGE (Nopackage/Continue)
 Path ===>

 Press ENTER to process or enter END command to terminate

Binding the Application Plan or Package F-17
Owner

Optional value used to specify the owner of the DB2 package.

Qualifier

Optional.

Path

Specify the path of the package. This field can contain 512 bytes of the entire 2048
bytes allowed by DB2 8.1.

F-18 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide

G-1

Appendix A.Appendix G.

GDBCS Support App G

XPEDITER/TSO and XPEDITER/IMS lets you use the single-byte character set (SBCS), the
double-byte character set (DBCS), and mixed (a combination of DBCS and SBCS) data
streams in your application programs and XPEDITER/TSO and XPEDITER/IMS screen
functions, testing functions, and data manipulation during a test session.

The attributes of the SBCS, DBCS, and mixed data streams are as follows:

While most XPEDITER functions operate normally with DBCS data streams, there are
some differences in how these fields are scrolled and how data is manipulated. This
section describes those differences.

Terminal Support
DBCS is supported only on terminal types where the ISPF variable ZDBCS is set to Yes.

When a test session is invoked, XPEDITER checks the terminal type and switches the
character set translation appropriately to one of the following:

• EBCDIC English (no Katakana)

• EBCDIC Katakana (no lowercase English)

• EBCDIC English with DBCS (lowercase English and SBCS Katakana coexist)

• EBCDIC Katakana with DBCS (no lowercase SBCS English)

EBCDIC English and EBCDIC Katakana character sets are determined by an inquiry to the
ISPF terminal type default. DBCS capability is determined by an inquiry to the ISPF
ZDBCS variable.

When a Katakana (Japanese) terminal is detected, all lowercase English output strings
(messages, title, and text) that appear on XPEDITER screens are converted to uppercase
English. DBCS lowercase characters are not affected.

SBCS An alphanumeric character set that lets one EBCDIC character occupy one
byte. It is used for languages that use 1-byte characters.

DBCS A graphic character set that lets 1 character occupy two bytes. It is used for
languages, such as Japanese, that use ideographic characters that cannot be
represented in one byte.

Mixed Data streams consisting of SBCS and DBCS characters. Special delimiters are
used to identify DBCS data in a mixed field. They are:

• Shift-out (X’0E’, called SO) to show the beginning of DBCS data

• Shift-in (X’0F’, called SI) to show the end of DBCS data

SO and SI are automatically inserted when you change shift status on the
terminal to begin and end DBCS data. SO and SI must always be paired in a
mixed data stream and are only displayed by using the appropriate control
keys on your terminal.

G-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
CAUTION:
Do not change the SET LOWCASE value if the terminal type is 32xxKN. The results
are unpredictable.

Program Support
DBCS is supported by XPEDITER in interactive mode only. DBCS can be used in standard
TSO, including IMS/DB and BTS, IMS/DC (MPP, BMP, IFP), and ISPF dialog programs.

Note: DBCS is not supported in Batch Connect and native TSO.

DBCS Fields on the Source Display
The following table (refer to Table G-1) describes the areas on the XPEDITER Source
display screen where DBCS data is valid. The DBCS Fields on the XPEDITER Source Display
Screen table indicates whether the area is an input or output area, the field attributes, and
a description of what the data consists of.

DBCS user-defined words may contain both double-byte EBCDIC and double-byte non-
EBCDIC characters.

Character set validation is based on field type (attribute) and terminal type. DBCS data in
a mixed field is validated using the following criteria:

1. All occurrences of SO are paired with SI (field level check).

2. All DBCS character lengths are even (field level check)

3. Each byte of a DBCS character is within a valid range X’41’ to X’FE’ and the DBCS
blank (X’4040’).

If 1 and 2 are not met, the DBCS field is converted to SBCS representation. If 3 is not met,
the DBCS character is shown as a nondisplayable character (X’4195’).

CAUTION:
Opening a Keep or Peek window on a group-level variable in which any of the
subordinate items have DBCS data will display indistinguishable characters in the

Table G-1. DBCS Fields on the XPEDITER Source Display Screen

Screen Area I/O Attribute Description

Header line O Mixed Displays SBCS and DBCS in the screen title.

Primary command line I/O Mixed Enter SBCS English XPEDITER commands. Enter SBCS or DBCS
data names, paragraph names, and literals.

Message line O Mixed Displays SBCS and DBCS in messages.

Source area O Mixed Displays SBCS program words, SBCS or DBCS user-defined
words (data names, paragraph names, literals, and comments).

Inserted lines I/O Mixed Enter SBCS or DBCS user-defined words (data names,
paragraph names, and literals).

Keep/Peek windows I/O Mixed

• Alphanumeric fields:
Displays and allows entry of DBCS or SBCS data.

• Graphic fields:
Displays and allows entry of DBCS data only.

Log and Show screens O Mixed Displays DBCS and SBCS data names, paragraph names,
literals, and source text.

DBCS Support G-3
window. XPEDITER treats the kept group-level variable as an alphanumeric field
and converts the entire window to SBCS representation. If all of the subordinate
items have SBCS data only, it is acceptable to open a Keep or Peek window on the
group-level variable.

Scrolling DBCS Data
When the PEEK or KEEP command is used, the data is displayed in fully scrollable
windows. 30 bytes are displayed at a time. Data exceeding the 30 bytes limit can be
displayed by scrolling left or right using the DLEFT or DRIGHT commands or by using
the (,(n,),)n, and :n line commands.

Scrolling is always by byte, not by character. When scrolling mixed or DBCS fields, the
display window will be adjusted when the result will split a DBCS character. The basic
rule is that if the first byte of a DBCS character is in the window at the left or right
boundaries, the complete character is displayed. The right boundary is extended by one
byte to display the character. If the second byte of a DBCS character is in the left
boundary of the window, the field is truncated by one byte on the left and the character
is not displayed.

When a mixed field is truncated, XPEDITER inserts and deletes the SO and SI delimiters
as needed to maintain the integrity of the SO/SI pairing. These inserted SO/SI delimiters
are for display purposes only and are not saved in the underlying data. When a DBCS
field is truncated, the field’s attribute byte is inserted to adjust the truncation.

The following pages show examples of the scrolling behavior of mixed and DBCS fields.

Scrolling Mixed Fields

The following 45-byte string is used to show the truncation behavior in a mixed field:

----+----1----+----2----+----3----+----4----+
1234<D1D2D3D4>5678<D5D6D7D8>ABCD<DaDbDcDd>EFG

Example 1

When a SBCS character or SO/SI is at the left or right boundary of the window, no
truncation occurs and the character is displayed.

For example, after scrolling the sample string 14 bytes left, the SBCS character 5 is at the
left boundary of the Keep window and the SBCS character F is at the right boundary of
the window. The result is shown below in Figure G-1:

Figure G-1. SBCS Example 1—Scrolling the Sample String 14 Bytes Left

Example 2

When the first byte of a DBCS character is at the left boundary of the window, the
character is displayed and an SO is inserted outside the window to maintain the SO/SI
pairing.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 +----2----+----3----+----4----
MORE-> K 02 DATA NAME > 5678<D5D6D7D8>ABCD<DaDb DcDd>EF
------ --- Before PGMNAME <>

G-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
For example, after scrolling the sample string 5 bytes left, the first byte of the DBCS
character D1 is at the left boundary of the window. The result is shown in Figure G-2:

Figure G-2. DBCS Example 2—Scrolling the Sample String 5 Bytes Left

Example 3

When the second byte of a DBCS character is at the left boundary of the window, the
character is not displayed and an SO is inserted at the left boundary to maintain the
SO/SI pairing. However, if you displayed the underlying hexadecimal values, the first
byte of the window contains the hexadecimal value of the second byte of the truncated
character.

For example, after scrolling the sample string 6 bytes left, the second byte of the DBCS
character D1 is at the left boundary of the window. The result is shown in Figure G-3:

Figure G-3. DBCS Example 3—Scrolling the Sample String 6 Bytes Left

Example 4

When the first byte of a DBCS character is at the right boundary of the window, the
window is extended by one byte and the complete DBCS character is displayed. The first
byte is displayed at the right boundary of the window and the second byte is displayed
outside the window. An SI is also inserted outside the window to maintain the SO/SI
pairing.

For example, after scrolling the sample string 5 bytes left, the first byte of the DBCS
character Dc is at the right boundary of the window. The result is shown in Figure G-4:

Figure G-4. DBCS Example 4—Scrolling the Sample String 5 Bytes Left

Example 5

When the second byte of a DBCS character is at the right boundary of the window, the
character is displayed and an SI is inserted outside the window to maintain the SO/SI
pairing.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 ----1----+----2----+----3----+
MORE-> K 02 DATA NAME > <D1D2D3D4>5678<D5D6D7D8>ABCD<Da>
------ --- Before PGMNAME <>

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 ---1----+----2----+----3----+-
MORE-> K 02 DATA NAME > <D2D3D4>5678<D5D6D7D8>ABCD<DaDb>
------ --- Before PGMNAME <>

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 -1----+----2----+----3----+---
MORE-> K 02 DATA NAME > <D3D4>5678<D5D6D7D8>ABCD<DaDbDc>
------ --- Before PGMNAME <>

DBCS Support G-5
For example, after scrolling the sample string 9 bytes left, the second byte of the DBCS
character Dc is at the right boundary of the window. The result is shown on the following
page in Figure G-5 on page G-5:

Figure G-5. DBCS Example 5—Scrolling the Sample String 9 Bytes Left

Scrolling DBCS Fields

The truncation behavior is slightly different when scrolling DBCS fields. To show the
behavior, the 40-byte DBCS string shown below is used:

 ----+----1----+----2----+----3----+----4
 D1D2D3D4D5D6D7D8D9D0DaDbDcDdDeDfDgDhDiDj

Example 6

When the first byte of a DBCS character is at the left boundary of the window or the
second byte of a DBCS character is at the right boundary, the character is displayed.

For example, after scrolling the sample string 2 bytes left, the first byte of the DBCS
character D2 is at the left boundary of the window and the second byte of the DBCS
character Df is at the right boundary of the window. The result is shown in Figure G-6:

Figure G-6. DBCS Example 6—Scrolling the Sample String 2 Bytes Left

Example 7

When the second byte of a DBCS character is at the left boundary of the window, the
character is not displayed and the attribute byte is inserted in the first byte of the
window to adjust the truncation. Although the DBCS character is not displayed, the left
boundary still contains the hexadecimal value of the second byte of the truncated
character.

When the first byte of a DBCS character is at the right boundary of the window, the
window is extended by one byte on the right and the character is displayed.

For example, after scrolling the sample string 9 bytes left, the second byte of the DBCS
character D5 is at the left boundary of the window and the first byte of the DBCS
character Dj is at the right boundary. The result is shown in Figure G-7:

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 1----+----2----+----3----+----
MORE-> K 02 DATA NAME > <D3D4>5678<D5D6D7D8>ABCD<DaDdDc>
------ --- Before PGMNAME <>

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 --+----1----+----2----+----3--
MORE-> K 03 DATA NAME > D2D3D4D5D6D7D8D9D0DaDbDcDdDeDf
------ --- Before PGMNAME <>

G-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure G-7. DBCS Example 7—Scrolling the Sample String 9 Bytes Left

Manipulating DBCS Data
DBCS data displayed in the Keep or Peek windows can be manipulated the same as SBCS
data. However, depending on the field attribute (SBCS, DBCS, or mixed), there are some
rules that must be observed when you type over, insert, delete, and move DBCS and SBCS
data.

Manipulating DBCS data in the Keep and Peek windows follows the same truncation
behavior as described in “Scrolling DBCS Data” on page G-3 and is controlled by the field
attribute (SBCS, DBCS, or mixed). However, the underlying data beyond the visible
window may be affected. Displaying the hexadecimal values with the PEEKH primary
command or the PH or H line command lets you see the actual underlying values.

The following pages describe the behavior when you manipulate DBCS data.

Typing Over Data

Typing over a DBCS field with SBCS data is not allowed. You can type over a mixed field
with SBCS or DBCS data. However, the underlying data beyond the visible window may
be affected. The same applies when inserting and deleting data. For example, if you type
over a DBCS substring with SBCS characters, the SO/SI bytes that are inserted or deleted
are saved in the underlying data.

Example 8

The following mixed field is used in this example (refer to Figure G-8) of typing SBCS
data over DBCS data.

Figure G-8. Example 8—Typing SBCS Data Over DBCS Data

Type the SBCS character 1 over the first byte of the DBCS character D1.

Example 9

After pressing Enter, the window appears as shown in Figure G-9:

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 1----+----2----+----3----+----
MORE-> K 03 DATA NAME > D6D7D8D9D0DaDbDcDdDeDfDgDhDiDj
------ --- Before PGMNAME <>

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 ----+----1----+----2----+----3
MORE-> K 02 DATA NAME > <D1D2D3D4>1234<D5D6D7D8>5678<Da>
 04F4F4F4F0FFFF04F4F4F4F0FFFF04
 E21222324F1234E25262728F5678E2
------ --- Before PGMNAME <>

DBCS Support G-7
Figure G-9. Example 9—Typing SBCS Character 1 Over DBCS Charter D1

Note that the hexadecimal values have changed. The following describes the result of the
changes in hexadecimal values:

• The SO in byte 1 of the window is the original SO in the underlying data.

• The SI in byte 2 was inserted when you shifted to type in the SBCS character 1.

• The SBCS character 1 is displayed in byte 3. D1 does not appear because the first byte
was typed over.

• A blank was inserted in byte 4 and a SO was inserted in byte 5 to show the beginning
of DBCS data. D2 is not displayed because both bytes could not be displayed.

• Bytes 6, 7, 8, and 9 contain the DBCS characters D3 and D4.

• The SI in byte 10 is the original SI in the underlying data.

Inserting Data

Inserting characters is not allowed unless null characters (blanks) are present in the
display window. If you try to insert more characters than the number of null characters,
the terminal simply will not accept the extra characters.

Example 10

The following DBCS field is used for this example (refer to Figure G-10) of inserting DBCS
characters:

Figure G-10. Example 10—Inserting DBCS Characters in a DBCS Field

Insert the DBCS character D1 in bytes 4 and 5 and repeat the character D2 in bytes 12
through 17.

Example 11

The result is shown in Figure G-11:

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 ----+----1----+----2----+----3
MORE-> K 02 DATA NAME > <>1 <D3D4>1234<D5D6D7D8>5678<Da>
 00F404F4F0FFFF04F4F4F4F0FFFF04
 EF10E2324F1234E25262728F5678E2
------ --- Before PGMNAME <>

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 ----+----1----+----2----+----3
MORE-> K 03 DATA NAME > <D1D2D3D4D5D6D7D8D9D0>
 04F4F4F4F4F4F4F4F4F4F044444444
 E21222324252627282920F00000000
------ --- Before PGMNAME <>

G-8 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure G-11. Example 11—Inserting DBCS Character D1 in Bytes 4 and 5

The result is that the inserted characters filled up the window. The The hexadecimal
values show that the inserted characters are now a part of the underlying data.

Deleting Data

When characters are deleted with the DELETE key, the null characters (blanks) are filled
from the end of the window, not from the end of the field. When characters are deleted
with the ERASE (EOF) key, the window starting from the cursor position is blanked out,
not the entire field.

Example 12

The following mixed field (refer to Figure G-12) is used to show the behavior when
deleting characters:

Figure G-12. Example 12—Display of Behavior When Deleting Characters

Use the DELETE key to delete the DBCS characters D1, D2, D3, and D4. The following is
displayed before you press the Enter key.

Example 13

Note that the hexadecimal values (refer to Figure G-13) in the example below have not
changed.

Figure G-13. Example 13—Using the DELETE Key to Delete DBCS Characters

After pressing the Enter key, the following is displayed.

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 ----+----1----+----2----+----3
MORE-> K 03 DATA NAME > <D1D1D2D3D4D2D2D2D5D6D7D8D9D0>
 04F4f4F4F4F4F4F4F4F4F4F4F4F4F0
 E2121222324222222252627282920F
------ --- Before PGMNAME <>

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 ----+----1----+----2----+----3
MORE-> K 02 DATA NAME > 1234<D1D2D3D4>5678<D5D6D7D8>AB
 FFFF04F4F4F4F0FFFF04F4F4F4F0CC
 1234E21222324F5678E25262728F12
------ --- Before PGMNAME <>

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 ----+----1----+----2----+----3
MORE-> K 02 DATA NAME > 1234<>5678<D5D6D7D8>AB
 FFFF04F4F4F4F0FFFF04F4F4F4F0CC
 1234E21222324F5678E25262728F12
------ --- Before PGMNAME <>

DBCS Support G-9
Example 14

In the example (refer to Figure G-14 on page G-9), note that the hexadecimal values have
changed—the values of the deleted characters are no longer displayed.

Figure G-14. Example 14—Deleted Characters No Longer Displayed

Moving Data

The MOVE command can be used to move DBCS or SBCS data into a mixed alphanumeric
field. However, you cannot move a G type literal into this type of field.

A DBCS literal can be moved to a DBCS field as long as the appropriate SO/SI are inserted.
When the DBCS data is moved to the field, the field is padded with the DBCS blank
(X’4040’) and the SO/SI pairing is deleted.

Example 15

The following DBCS field (refer to Figure G-15) is used to show the behavior when
moving DBCS data:

Figure G-15. Example 15—Displayed Behavior When Moving DBCS Data

Move the DBCS characters D2D3D4D5D6 to N-NAME.

Example 16

After pressing the Enter key, the move is performed and the window appears as shown in
Figure G-16. Note that the new string replaced the existing data and the field was
padded with DBCS blanks.

Figure G-16. Example 16—Results of Moving DBCS Characters to N-NAME

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 ----+----1----+----2----+----3
MORE-> K 02 DATA NAME > 1234<>5678<D5D6D7D8>AB
 FFFF00FFFF04F4F4F4F0CC44444444
 1234EF5678E25262728F1200000000
------ --- Before PGMNAME <>

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> MOVE G’<D2D3D4D5D6>’ TO N-NAME SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 ----+----1----+----2----+----3
MORE-> K 03 DATA NAME > D1D1D1D1D1D1D1D1D1D1D1D1D1D1D1
 4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F
 212121212121212121212121212121
------ --- Before PGMNAME <>

------------------------------ XPEDITER/TSO - SOURCE ---------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: PGMNAME MODULE: MODNAME COMP DATE: 09/30/1996 COMP TIME: 15:14:45
 1----+----2----+----3----+----
MORE-> K 03 DATA NAME > D2D3D4D5D6
 4F4F4F4F4F44444444444444444444
 222324252600000000000000000000
------ --- Before PGMNAME <>

G-10 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide

H-1

Appendix A.Appendix H.

HCOBOL-Structure Keywords App H

The following table describes each COBOL-structure keyword and the verbs that the keyword identifies.
All verbs are shown in capital letters. Where keywords to a verb are listed, the keywords are shown in
lowercase, and the verbs, capitalized, are enclosed in parentheses.

Keyword Description and Reference

ALTer

Possible modification of the value of a data name or index:

Everything in the INPUT keyword, plus ADD, by (PERFORM), CALL, COMPUTE, DIVIDE,
EXAMINE (OS/VS COBOL only), from (PERFORM, WRITE), INITIALIZE (VS COBOL II only),
INSPECT, MOVE, MULTIPLY, SEARCH, SET, STRING, SUBTRACT, TRANSFORM (OS/VS
COBOL only), UNSTRING, varying (PERFORM);

EXEC CICS keywords: ADDRESS, ASKTIME, ASSIGN, FORMATTIME, INQUIRE DATASET,
INQUIRE PROGRAM, INQUIRE TERMINAL, INQUIRE TRANSACTION, LINK, XCTL

BRAnch

Transfer of logic control:

Everything in the CONDition keyword, plus ALTER, CALL, CONTINUE, ENTRY, EXIT,
GOBACK, GO TO, NEXT SENTENCE, PROCEDURE DIVISION, PERFORM, STOP, INPUT
PROCEDURE, OUTPUT PROCEDURE;

EXEC CICS keywords: ABEND, HANDLE ABEND, HANDLE AID, HANDLE CONDITION,
LINK, RETURN, XCTL;

EXEC SQL keywords: WHENEVER

CALL CALL and CANCEL statements, excluding generated calls from EXEC CICS or EXEC DLI

CICS EXEC CICS statements

CONDition

Conditional logic:

At end (READ, SEARCH, RETURN), at eop/at end-of-page (WRITE), depending on (GO
TO), else (IF), EVALUATE (VS COBOL II only), IF, invalid key (DELETE, WRITE, START, READ,
REWRITE), otherwise (IF) (OS/VS COBOL only), ON (OS/VS COBOL only), on exception
(CALL), on overflow (STRING, UNSTRING, CALL), on size error (ADD, SUBTRACT,
MULTIPLY, DIVIDE, COMPUTE), times (PERFORM), until (PERFORM), when (SEARCH)

DLI EXEC DLI statements or calls to CBLTDLI

H-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
IO

Input and output to a program:

ACCEPT, CALL, CLOSE, DELETE, DISPLAY, EXHIBIT (OS/VS COBOL only), MERGE, OPEN,
READ, RELEASE, RETURN, REWRITE, SORT, START, WRITE

NOTE: The CALL modules must be specified on the Input/Output Module Definition
screen completed at installation time or they will not be highlighted by the FIND IO
command.

EXEC CICS keywords: CONVERSE, DELETE, DELETEQ TD, DELETEQ TS, DBR, READ,
READNEXT, READPREV, READQ TD, READQ TS, RECEIVE, RESETBR, RETRIEVE, REWRITE,
SEND, STARTBR, NCPOINT, UNLOCK, WRITE, WRITEQ TD, WRITEQ TS;

CALL CBLTDLI function code keywords: CHKP, CHNG, CLSE, CMD, DEQ, DLET, FLD,
GCMD, GET CHN, CHNP, GHU, GN, GNP, GU, IRST, LOAD, LOG, OPEN POS, PURG,
REPL, ROLB, ROLL, SHCD, SNAP, STAT, SYMCHKP, SYNC, TERM, XRST;

EXEC DLI keywords: CHKP, DLET, GU, GN, GNP, ISRT, LOAD, LOG, REPL, ROLL, ROLB,
SCHD, STAT, SYMCHKP, TERM, XRST;

EXEC SQL keywords: CLOSE, COMMIT, DECLARE CURSOR, DELETE, FETCH, INSERT,
OPEN, ROLLBACK, SELECT, UPDATE

Input or INPut

Receive data into the program:

ACCEPT, READ, RETURN;

EXEC CICS keywords: CONVERSE, READ, READNEXT, READPREV, READQ TD, READQ TS,
RECEIVE, RETRIEVE;

EXEC DLI keywords: GU, GN, GNP, STAT;

CALL CBLTDLI function code keywords: CMD, FLD, GCMD, GET, GHN, GHNP, GHU,
GN, GNP, GU, POS, STAT;

EXEC SQL keywords: FETCH, SELECT, UPDATE

Output or
OUTput

Transmit data out of the program:

DELETE, DISPLAY, EXHIBIT (OS/VS COBOL only), MERGE, RELEASE, REWRITE, SORT,
WRITE;

EXEC CICS keywords: CONVERSE, DELETE, DELETEQ TD, DELETEQ TS, REWRITE, SEND,
WRITE, WRITEQ TD, WRITEQ TS;

CALL CBLTDLI function code keywords: CMD, DLET, FLD, ISRT, REPL, SNAP;

EXEC DLI keywords: DLET, ISRT, REPL;

EXEC SQL keywords: DELETE, INSERT, UPDATE

PARAgraph Paragraph or section labels

SQL DB2 statements or EXEC SQL calls

Keyword Description and Reference

I-1

Appendix A.Appendix I.

IDebugging a Client Application and DB2 Stored

Procedure App I

The following instructions pertain to a specialized technique that allows for the
debugging of a client application (i.e., a DB2 batch program) which calls a DB2 stored
procedure, while using a single TSO userid.

Note: This technique will only work if the client application is submitted as a batch
program set up to run with XPEDITER/TSO Batch Connect.

CAUTION:
To become familiar with the process outlined below, it may be beneficial to step
through the process a few times using the stored procedure Initial Verification
Procedure (IVP) found in the XPEDITER/TSO and XPEDITER/IMS Installation Guide.

Note the following instructions:

1. Access the XPEDITER/TSO Process Execute JCL screen (Figure I-1) by entering a Y in
the User Supplied WLM JCL field of the XPEDITER/TSO Process DB2 Stored
Procedures screen (Figure 8-2 on page 8-4).

Figure I-1. XPEDITER/TSO Process Execute JCL Screen

2. Type the name of your pre-defined dataset in the Dataset Name field of the Process
Execute JCL screen and press Enter to access the second Process Execute JCL screen
(Figure I-2 on page I-2). If you wish to have a dataset name provided for this
example, use the dataset name of the XPEDITER/TSO SAMPLIB. The default name is:

‘COMPWARE.XT.SLXTSAMP’

-------------------- XPEDITER/TSO - PROCESS EXECUTE JCL -----------------------
COMMAND ===>

Primary Commands: blank (Process JCL) Browse Edit SEtup STatus

ISPF Library:
 Project ===> PFHABC0
 Group ===> BATCON ===> ===> ===>
 Type ===> JCL
 Member ===> (Blank for member selection list)

Other Partitioned or Sequential Dataset:
 Dataset Name ===> 'COMPWARE.XT.SLXTSAMP'
 Volume Serial ===> (If not cataloged)

 Press ENTER to process or enter END command to terminate

I-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
Figure I-2. Second Process Execute JCL Screen

3. Scroll down (PF8) to the member name which has been defined for the stored
procedure. For the continuity of this example, the member name is TRIJCLST. Type
an S in the field to the left of TRIJCLST and press Enter. If you do not receive any
error messages, you should have returned to the Select Job Step Screen (similar to
Figure I-3, the Select Job Step Screen # 3).

The Dataset field should now include the member name (TRIJCLST), enclosed in
parentheses.

4. Type SUBmit on the Command line of the XPEDITER/TSO Select Job Step Screen # 3
(as shown in Figure I-3). Type an I in the field immediately to the left of the
PROGRAM field of the Select Job Step Screen # 3 (Figure I-3). Press Enter to submit
the DB2 stored procedure. You should receive an online message at the bottom of
your screen stating that your job was submitted.

Figure I-3. XPEDITER/TSO Select Job Step # 3

5. Press Enter and you will view a four line message similar to the message displayed in
Figure I-4 on page I-3. If you do not receive the WAITING FOR CONNECTION
message, you will view a message at the bottom of your screen stating:

JCL HAS BEEN MODIFIED TO DEBUG WITH XPEDITER

----------------- XPEDITER/TSO - PROCESS EXECUTE JCL ------- ROW 00031 OF 00043
COMMAND ===> SCROLL ===> PAGE

Line Commands: B (Browse) E (Edit) S (Select for processing)

Dataset: 'COMPWARE.XT.SLXTSAMP'

 Name Prompt Size Created Changed ID

_ JCL015 102 2000/10/17 2000/10/17 12:29:17 PFHABC0
_ JCL015O 96 2000/10/17 2000/10/17 10:17:51 PFHABC0
_ LISTPROC 6 2000/10/24 2000/10/26 09:47:46 PFHABC1
_ LISTPRO5 6 2000/10/24 2000/10/24 13:17:49 PFHABC0
_ TRIJCLSM 42 2000/10/24 2000/10/24 12:00:38 PFHABC1
S TRIJCLST 46 2000/10/24 2000/10/24 11:55:50 PFHABC1
_ TRISPMB 47 2000/10/23 2000/10/23 11:47:21 PFHABC0
_ TRISPT6 34 2000/10/23 2000/10/23 11:27:22 PFHABC0
_ UNLOAD1 28 2000/10/16 2000/10/17 09:18:34 PFHABC0
_ XTUNLD 60 2000/10/17 2000/10/17 09:33:51 PFHABC0
_ XTUNLDO 53 2000/10/17 2000/10/17 09:25:44 PFHABC0
_ XTUPDATE 484 2000/10/17 2000/10/17 09:25:37 PFHABC0
_ X70CW40 435 2000/10/17 2000/10/17 12:45:35 PFHABC0
 End

PROFILE: DB2SP--------- XPEDITER/TSO - SELECT JOB STEP ---------- Row 1 of 1
COMMAND ===> SUB SCROLL ===> PAGE

Line Commands: Primary Commands:
 I - Interactive testing Edit - Display converted selected steps
 U - Unattended testing END - Exit without processing
 IC - Interactive Code Coverage RUN - Submit and connect
 UC - Unattended Code Coverage SEtup - Setup work datasets
 SUBmit - Convert selected steps and submit
 blank - Reset I/U/C STatus - Display status of submitted job(s)

Dataset: 'COMPWARE.XT.SLXTSAMP(TRIJCLST)'

 PROGRAM INITSCR STEPNAME PROCNAME PROCSTEP EXEC PGM
-------------------------- --
I DSNX9WLM ________ SERVER IEFPROC
******************************* Bottom of data ********************************

Debugging a Client Application and DB2 Stored Procedure I-3
Figure I-4. Stored Procedure Waiting for Connection Message

6. Press Enter to remove the messages from your screen. You should remain in the Select
Job Step screen # 3 (Figure I-3 on page I-2).

7. Type STatus on the Command line of the Select Job Step screen and press Enter to
access the XPEDITER/TSO Status screen # 1 shown in Figure I-5.

Figure I-5. XPEDITER/TSO Status Screen # 1 (Stored Procedure)

8. Press Enter to refresh the Status screen and view the status of the stored procedure
job. A single line of data is displayed on XPEDITER/TSO Status Screen # 1 (Figure I-5).
This line displays the stored procedure jobname in the JOBNAME field and a valid
JOBID number. The CONNECT field should indicate that the stored procedure is
Ready to connect.

Note: The default security for Batch Connect requires that the jobname must begin
with your USERID.

9. Using XPEDITER Batch Connect (which is OPTION 3 (BATCH) on the XPEDITER/TSO
Primary Menu), set up the client application that has been selected to call the stored
procedure. It will duplicate steps 1 through 7.

10. Press Enter to refresh the Status screen and view the status of both the client
application Job and the stored procedure.

Figure I-6. XPEDITER/TSO Status Screen # 2 (Client Application and Stored Procedure)

+XPD0011 VTAM NODE: A01CS000 USER: PFHABC0 JOBNAME: PFHABC0S
+XPD0012 JOBNUMBER: JOB12001 STEP: IEFPROC PROCSTEP:
+XPD0013 IS WAITING FOR CONNECTION ON SYSTEM CW01.

--------------------------- XPEDITER/TSO - STATUS ---------------------------
COMMAND ===> SCROLL ===> PAGE

Line Commands: A (Attach) B (Browse) C (Cancel) USERID => PFHABC0
 I (Info) P (Purge) R (Requeue)

 Jobname ===> (Specific jobname, blank for TSO userid, or
 '*' for all jobs using batch connect)
 Sort Sequence ===> JOBID (JOBNAME/JOBID)

CMD JOBNAME JOBID STATUS H CONNECT MESSAGE

__ PFHABC0S JOB12006 Running N Ready
******************************* Bottom of data ********************************

 --------------------------- XPEDITER/TSO - STATUS --------------- Row 1 of 2
 COMMAND ===> SCROLL ===> CSR

 Line Commands: A (Attach) B (Browse) C (Cancel) USERID => PFHABC0
 I (Info) P (Purge) R (Requeue)

 Jobname ===> (Specific jobname, blank for TSO userid, or
 '*' for all jobs using batch connect)
 Sort Sequence ===> JOBNAME (JOBNAME/JOBID)

 CMD JOBNAME JOBID STATUS H CONNECT MESSAGE

 __ PFHABC0C JOB12006 Running Ready
 __ PFHABC0S JOB12001 Running Ready
 ******************************* Bottom of data ********************************

I-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
11. A new line of data is now displayed containing both a valid Jobname (your client
jobname in the JOBNAME field) and a valid JOBID number. The CONNECT field
should indicate that both the client job and the stored procedure are Ready to
connect. After you have verified that your client job is Ready to connect, type an A
(next to the client application JOBNAME) in the CMD field of the XPEDITER/TSO
Status screen # 3 (Figure I-7). Press Enter to connect to the client application job.

Figure I-7. XPEDITER/TSO Status Screen # 3 (Client Application and Stored Procedure)

12. The source for the client application should appear on the XPEDITER/TSO Source
screen # 1 (refer to Figure I-8). Enter a Before breakpoint on the line where the stored
procedure is called.

Figure I-8. XPEDITER/TSO Source Screen # 1 (Client Application)

13. Enter any desired XPEDITER/TSO testing commands that you require.

14. When the Before breakpoint on the stored procedure call is encountered, type GO 1
on the Command line and press Enter.

15. Immediately following issuance of the GO 1 command, the client application will
“lock” (control has been transferred to the stored procedure). Press the Attention key
twice. The screen that is displayed contains the following two lines:

XPED
ENTER ATTENTION OPTION OR HELP FOR LIST OF OPTIONS

 --------------------------- XPEDITER/TSO - STATUS --------------- Row 1 of 2
 COMMAND ===> SCROLL ===> CSR

 Line Commands: A (Attach) B (Browse) C (Cancel) USERID => PFHABC0
 I (Info) P (Purge) R (Requeue)

 Jobname ===> (Specific jobname, blank for TSO userid, or
 '*' for all jobs using batch connect)
 Sort Sequence ===> JOBNAME (JOBNAME/JOBID)

 CMD JOBNAME JOBID STATUS H CONNECT MESSAGE

 A PFHABC0C JOB12006 Running Ready
 __ PFHABC0S JOB12001 Running Ready
 ******************************* Bottom of data ********************************

------------------------- XPEDITER/TSO - SOURCE ------------------------------
COMMAND ===> SCROLL ===> CSR
 BEFORE BREAKPOINT ENCOUNTERED
 ----+----1----+----2----+----3
MORE-> 01 SQL-PLIST1 > TRISPM ..B...~0.....Q..
 ** END **

------ -- Before TRISPM:182 <>
000181 PERFORM SQL-INITIAL UNTIL SQL-INIT-DONE
=====> B CALL 'DSNHLI' USING SQL-PLIST1.
000183 IF SQLCODE IS LESS THAN ZERO
000184 MOVE SQLCODE TO ERROR-SQLCODE
000185 MOVE 'CALL' TO ERROR-TABLE
000186 PERFORM SQL-ERROR
000187 A GOBACK.
000188 SET TX TO TRIANGLE-TYPE.
000189 ADD 1 TO N-CNTR (TX).
000190 *
000191 ENDING-PARA.
000192 CLOSE INFILE.
000193 CALL 'TRIRPT' USING NAME-N-CNTR-TABLE.
000194 *

Debugging a Client Application and DB2 Stored Procedure I-5
16. Type DISC (to disconnect) on the line below the message displayed on the screen,
and press Enter. This will return you the Status screen without terminating the client
application test.

17. Type an A (next to the stored procedure JOBNAME) in the CMD field of the
XPEDITER/TSO Status screen # 4 (refer to Figure I-9) and press Enter. This will
connect you to the stored procedure.

Figure I-9. XPEDITER/TSO Status Screen # 4 (Client Application and Stored Procedure)

18. The source for the stored procedure should appear on the XPEDITER/TSO Source
Screen # 2 (Figure I-10).

Figure I-10. XPEDITER/TSO Source Screen # 2 (Stored Procedure)

19. Enter any desired XPEDITER/TSO testing commands that you require.

20. To return to the client application, type GO at the end of the stored procedure and
press Enter. If you had specified the number 1 in the Maximum Number of Tests
field when setting up the stored procedure for debugging with XPEDITER/TSO, you
will now be placed in the LOG dataset with a TEST COMPLETED message. Entering
GO will cleanly end the stored procedure test. If you had specified a number greater
than 1 in the Maximum Number of Tests field when setting up the stored procedure
for debugging with XPEDITER/TSO, the stored procedure will “lock” (control has
been returned to the client application). Press the Attention key twice. The screen
that is displayed contains the following two lines:

 --------------------------- XPEDITER/TSO - STATUS --------------- Row 1 of 2
 COMMAND ===> SCROLL ===> CSR

 Line Commands: A (Attach) B (Browse) C (Cancel) USERID => PFHABC0
 I (Info) P (Purge) R (Requeue)

 Jobname ===> * (Specific jobname, blank for TSO userid, or
 '*' for all jobs using batch connect)
 Sort Sequence ===> JOBNAME (JOBNAME/JOBID)

 CMD JOBNAME JOBID STATUS H CONNECT MESSAGE

 __ PFHABC0C JOB12006 Running Ready
 A PFHABC0S JOB12001 Running Ready
 ******************************* Bottom of data ********************************

------------------------- XPEDITER/TSO - SOURCE ------------------------------
COMMAND ===> SCROLL ===> CSR
 BEFORE BREAKPOINT ENCOUNTERED

000010 01 TST-REC > 345
000014 01 TYPE-OF-TRIANGLE > ?? INVALID DECIMAL
 ** END **

------ -- Before TRISPT <>
=====> B PROCEDURE DIVISION USING TST-REC
000016 TYPE-OF-TRIANGLE
000017 VALIDATE-TRIANGLE
000018 ADD A B GIVING A-N-B.
000019 ADD A C GIVING A-N-C.
000020 ADD B C GIVING B-N-C.
000021 IF (B-N-C NOT > A) OR (A-N-C NOT > B) OR (A-N-B NOT > C)
000022 MOVE 4 TO TYPE-OF-TRIANGLE.
000023 DETERMINE-TYPE.
000024 IF TYPE-OF-TRIANGLE = 4
000025 NEXT SENTENCE
000026 ELSE
000027 IF (A = B) AND (B = C)
000028 MOVE 1 TO TYPE-OF-TRIANGLE

I-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
XPED
ENTER ATTENTION OPTION OR HELP FOR LIST OF OPTIONS

21. Type DISC (to disconnect) on the line below the message displayed on the screen,
and press Enter. This will return you the Status screen without terminating the stored
procedure environment.

22. Type an A (next to the client application JOBNAME) in the CMD field of the
XPEDITER/TSO Status screen # 3 (refer to Figure I-7 on page I-4) and press Enter. This
will connect you to the client application.

23. You should now be able to view the XPEDITER/TSO Source Screen # 3 (refer to Figure
I-11) that displays the client application, just after the stored procedure call.

Figure I-11. XPEDITER/TSO Source Screen # 3 (Client Application)

24. Continue repeating steps 15 through 23 to switch back and forth between the stored
procedure and the client application. For the stored procedure, when the Maximum
Number of Tests (specified when you first set up the stored procedure test) has been
reached, you will be positioned in the XPEDITER LOG dataset screen with the
message: TEST COMPLETED. When this message appears, type GO on the command
line and press Enter to exit the stored procedure.

25. Because you entered GO 1 in step 15, you must now reattach to the client application
and allow it to run to completion. This is normally done by entering the GO
command.

-------------------------- XPEDITER/TSO - SOURCE ------------------------------
COMMAND ===> SCROLL ===> CSR
PROGRAM: TRISPM MODULE: TRISPM COMP DATE: 10/23/2000 COMP TIME:11:52:35
COBOL K TX > 1 INDEX
000059 05 SQLCODE > +000000000 FULLWORD
 ** END **

------ -- Before TRISPM:183 <>
000181 PERFORM SQL-INITIAL UNTIL SQL-INIT-DONE
000182 B CALL 'DSNHLI' USING SQL-PLIST1.
=====> IF SQLCODE IS LESS THAN ZERO
000184 MOVE SQLCODE TO ERROR-SQLCODE
000185 MOVE 'CALL' TO ERROR-TABLE
000186 PERFORM SQL-ERROR
000187 A GOBACK.
000188 SET TX TO TRIANGLE-TYPE.
000189 ADD 1 TO N-CNTR (TX).
000190 *
000191 ENDING-PARA.
000192 CLOSE INFILE.
000193 CALL 'TRIRPT' USING NAME-N-CNTR-TABLE.
000194 *

 G-1
Glossary

abend. An error condition that results in abnor-
mal termination of a program.

absolute address. An address that can refer-
ence the specified memory location without fur-
ther modification.

active module. The module in which execution
is suspended.

active source file. See current source display.

address. A unique nonnegative integer that iden-
tifies a byte location in main memory.

address space. The range of addresses available to
a programmer.

alternate entry points. An alternate entry point
is created whenever an ENTRY statement is used in
COBOL, even if the ENTRY statement is the first
statement in the Procedure Division.

array. A collection of one or more elements with
the same characteristics grouped into one or more
dimensions.

assemble. The preparation of a machine language
program from a symbolic language program by
substituting absolute operation codes for symbolic
operation codes and absolute or relocatable
addresses for symbolic addresses.

Assembler language processor. One of the lan-
guage processors provided by Compuware, this
language processor accepts Assembler output,
builds work records, sorts and merges the records,
and merges the records with the listing to produce
processor control blocks that can then be used as
input to other Compuware products.

base address. The beginning address of the stor-
age area where the CSECT or DSECT resides.

base register. A general-purpose register used to
store a base address.

batch. Processing in which jobs are grouped
(batched). The jobs are executed sequentially, and
each job must be processed to completion before
the following job can begin execution.

BDAM. Basic direct access method.

Branch Coverage. When referencing
XPEDITER/Code Coverage (if installed at your
site), Branch Coverage is defined as a methodol-
ogy for tracking the number of paths which were

taken during execution of a conditional state-
ment. For Code Coverage, this methodology desig-
nates a specific type of statistic. Branch Coverage
is supported only for COBOL and must be imple-
mented to indicate whether the next verb in suc-
cession is intended for execution. The collection
of Branch Coverage statistics is optional during a
Code Coverage session.

Qualifying condition statement types for Branch
Coverage include IF, ON n, and WHEN. In terms of
reliability, Branch Coverage is considered the most
thorough method required for the testing of
specialized application programs.

breakpoint. A location or offset (paragraph or
statement) within the program where XPEDITER
“breaks” or temporarily suspends normal program
execution to perform another function.

C370 language processor. One of the language
processors provided by Compuware, this language
processor accepts C compiler output, builds work
records, sorts and merges the records, and merges
the records with the listing to produce processor
control blocks that can then be used as input to
other Compuware products

CA-Optimizer. A COBOL productivity and opti-
mization product for the OS and OS/VS environ-
ments. CA-Optimizer optimizes COBOL programs.
It works on the object code of a program, reducing
the size of the program and its run time by elimi-
nating redundant machine instructions.

case sensitivity. Whether a group of letters is
uppercase or lowercase.

CICS. Customer information control system.

COBOL language processor. One of the language
processors provided by Compuware, this language
processor accepts COBOL compiler output, builds
work records, sorts and merges the records, and
merges the records with the listing to produce pro-
cessor control blocks that can then be used as
input to other Compuware products.

code coverage. The concept of measuring and
reporting on how much of one or more programs
have been executed by a set of tests. (see also
XPEDITER/Code Coverage)

column template. A dashed line depicting col-
umn positions. When debugging with XPEDITER,
a column template is displayed above each group
item and each nonnumeric elementary item. The
length of the column template corresponds to the
length of the variable to be displayed as defined in
the picture clause.

CMS. Conversational monitor system.

G-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
command area. The area of any display used to
enter XPEDITER primary commands. The com-
mand area is designated as the left side of the sec-
ond line of the source display.

command delimiter. A character used to separate
commands in a list of commands entered simulta-
neously. The character used should be the same as
the ISPF command delimiter. If the XPEDITER and
ISPF command delimiters are not the same, ISPF
will break the stream down into illogical sections
to be passed on to XPEDITER one at a time for
parsing.

command, CICS. In CICS, an instruction similar
in format to a high-level programming language
statement. CICS commands begin with the
pseudo-verb EXEC (either EXEC CICS or EXEC
DLI) and are terminated by END-EXEC. They can
be issued by an application program to make use
of CICS facilities.

command-language statement. Synonymous
with command in relation to CICS.

command stacking. A method of entering multi-
ple commands simultaneously by separating each
command by a special delimiter. Command stack-
ing is valid when testing with XPEDITER/TSO only
if you are using ISPF version 2.1 or higher.

communication area (COMMAREA). An area
that is used to pass data between tasks that com-
municate with a specific terminal. The area is also
used to pass data between programs within a task.

conditional expression. Any of the valid COBOL
expressions supported by XPEDITER that test con-
ditions to select between alternate paths of control
depending upon the truth value of the condition.

CSECT. Control section.

current source display. The program currently
displayed on the Source screen. It is named in the
third line of the Source screen.

data area. Storage space defined and reserved at
assembly time for insertion and manipulation of
data at execution time.

date/time stamp. The date and time of compila-
tion that marks the load module. XPEDITER stores
the date/time stamp in the header record of the
DDIO file. If there is a mismatch between the load
module stamp and the DDIO file stamp,
XPEDITER responds with a message in the log.

DB2 stored procedure. See stored procedure.

DDIO. A Compuware file access method.

DDIO file. A generic name for an XPEDITER
source listing file.

declaration statement. In PL/I, a DECLARE state-
ment that specifies the attributes of a name.

declarative. Directives that reserve defined areas
of storage (DS statements) or define constant val-
ues (DC statements).

default delimiter. The delimiter set by
XPEDITER.

dimension. The size of a table or array and the
arrangement of its elements.

directive. A statement that tells the assembler to
take a special action and does not generate object
code. For example, START, DSECT, and END are
directives.

displacement. The number of bytes from the first
byte of the storage area.

DL/I. Data language 1. IBM’s database manage-
ment facility provided by the IMS/VS database
program products.

doubleword. A binary constant that has a length
of eight bytes and can be aligned on a doubleword
boundary (a location whose address is divisible by
eight).

DSECT. Dummy control section. Used by Assem-
bler to format an area of storage without produc-
ing any object code.

dump. Hexadecimal representation of storage
that may contain data useful for diagnosing an
error.

duplication factor. A value that indicates the
number of times to generate the data specified
immediately following the duplication factor.

effective address. The address that results from
adding a base register value and a displacement
value.

entry point. The alternate name supplied in the
ENTRY statement on the link-edit control cards:
By default in COBOL, it is the program name.

execution monitor. The XPEDITER execution
monitor is used to allocate the test data and the
environment to run the test, load and monitor
execution of your program, and display and for-
mat the data in your program.

explicit declaration. In PL/I, a DECLARE state-
ment that specifies the attributes of a name. Same
as declaration statement.

 G-3
figurative constant. A compiler-generated value
referenced through the use of certain reserved
words. The reserved word can be written in a pro-
gram without having been defined.

File-AID for DB2. A DB2 database management
and SQL development and analysis tool.

fullword. A binary constant that has a length of
four bytes and can be aligned on a fullword
boundary (a location whose address is divisible by
four).

general-purpose registers. The 16 general-pur-
pose registers are separate from main storage. They
are numbered from 0 through 15 and are refer-
enced by number. These 32-bit or 64-bit registers
are used for binary arithmetic and to reference
main storage positions by using base-displacement
addressing.

halfword. A binary constant that has a length of
two bytes and can be aligned on a halfword
boundary (a location whose address is divisible by
two).

HELP facility. Online support that can be
invoked for clarification or aid in relation to a
problem.

INCLUDE library. Under MVS, a partitioned
dataset created and maintained by the user allo-
cated to the ddname XINCLUDE. This library con-
tains test scripts generated by a test session or used
to set up a session.

INCLUDE test script. A predefined test script
executed through the INCLUDE command. The
commands in the test script are executed as they
are read in, as if they had been entered serially
from the terminal.

index register. A register whose content is added
to (or subtracted from) the absolute address which
is derived from a combination of a base address
with a displacement.

initial test script. A special test script executed at
the beginning of a session that is used to set up
the testing environment. This test script is not
executed through the INCLUDE command. Rather,
it is specified on the appropriate environment test
menu or command parameter.

intercommunication facilities. A term covering
intersystem communication (ISC) and multiregion
operation (MRO).

intersystem communication. Communications
between separate systems by means of SNA facili-
ties.

Keep window. The window at the top of the
Source screen that automatically displays the val-
ues of data items referenced by the current execu-
tion line whenever execution halts. It also displays
any data items specified by the KEEP command.

label. The entry in the name field of an Assem-
bler language statement. The Assembler option
supports label names of up to 30 characters.

language processor (LP). A processor that con-
verts Assembler or compiler output into input for
other Compuware products.

License Management System (LMS). Facility
that enables you to centrally administer Compu-
ware product License Certificates and manage
access to Compuware products at your site. The
LMS includes several components that enable you
to establish, maintain, diagnose, and upgrade
access to those Compuware products licensed by
your enterprise. The LMS replaces the utility previ-
ously known as the Customer Profile Utility.

line commands. XPEDITER commands that are
entered by typing over the compiler-generated
statement numbers.

link pack area. In OS/VS2, an area of virtual stor-
age containing reenterable routines loaded at IPL.
It can be used concurrently by all tasks in the sys-
tem.

literal. Any alphanumeric string of characters
enclosed in apostrophes (’ ’).

load libraries. In the MVS environment, the set
of partitioned datasets containing the link-edited
application programs. XPEDITER searches the list
for the load module of the program to be tested.

log. A file created and used by XPEDITER to
record each command entered during a debugging
session and the responses made to it.

macroinstruction. An instruction that causes the
assembler to process a predefined set of statements
called a macro definition. The statements from the
macro definition replace the macroinstruction (or
macro call) in the source program.

message area line. The line below the command
area, generally the third line of any source display
used to report brief error or informational mes-
sages.

MQSeries. MQSeries for OS/390 allows OS/390
applications to use message queuing to participate
in message-driven processing. With message-
driven processing, applications can communicate
across different platforms by using the appropriate
MQSeries products. All MQSeries products imple-

G-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
ment a common application programming inter-
face for whatever platform the applications are
able to run on. The calls made by the applications
and the messages they exchange are common.

multiregion operation. Communication
between CICS systems in the same processor with-
out the use of SNA facilities.

MVS. Multiple virtual storage.

native CMS. The VM/CMS environment without
the use of ISPF.

native TSO. The MVS/TSO environment without
the use of ISPF.

nonrepresentable characters. Characters that
cannot be printed or displayed. By default
XPEDITER displays nonrepresentable characters as
periods (.).

NOQ environment. An XPEDITER/TSO environ-
ment used to test IMS MPP or BMP programs when
BTS is not available for testing. IMS database calls
can be made since XPEDITER/TSO will provide
addressability to any IOPCBs. However, all calls to
the message queue must be skipped.

object module. A module that is the output of an
Assembler or compiler.

offset. A relative location or position within a
data area.

operating system. Software that controls the exe-
cution of jobs. It can provide resource allocation
and scheduling.

PA keys. The terminal program access keys. Their
definitions are unaltered by XPEDITER.

panels. Menus or screens presented on a display
terminal.

paragraph. For COBOL, a paragraph is a subdivi-
sion of a COBOL program: A paragraph contains
one or more statements or sentences that work as
a unit to perform a specific set of operations.

During an Assembler test, XPEDITER/TSO consid-
ers a paragraph to be a name, a label on one or
more valid executable instructions, or a name
label on an EQU * or DS 0H that is followed by one
or more valid executable instructions.

pausing. All pause breakpoint commands direct
XPEDITER to unlock the keyboard and return con-
trol to the user. Any number of XPEDITER com-
mands can be entered while XPEDITER is paused.

PCB. Program communication block.

PL/I language processor. One of the language
processors provided by Compuware, this language
processor accepts PL/I compiler output, builds
work records, sorts and merges the records, and
merges the records with the listing to produce pro-
cessor control blocks that can then be used as
input to other Compuware products.

primary commands. XPEDITER commands that
are entered from the command area, as opposed to
XPEDITER line commands which are entered by
typing over the compiler-generated statement
number.

procedure. In PL/I, a block of programming state-
ments that starts from various points in a program
by CALL statements and processes data passed to it
from the calling block.

procedure division. The section of a COBOL pro-
gram that contains executable instructions.

PSW. Program status word. An operating system
control block defining the current status and loca-
tion of a program that is executing.

Quickstart. A File Allocation Utility (FAU)
enhancement which provides the ability for users
to point XPEDITER at the JCL needed to run a test,
therefore eliminating the need to use the FAU.

register. A device capable of storing a specified
amount of data, such as one word (32 bit mode) or
two words (64 bit mode).

review mode. An XPEDITER dynamic analysis
feature for COBOL programs that lets the program-
mer review the execution flow backwards.

screens. Menus or panels presented on a display
terminal.

script dataset/file. A dataset or file created and
used by XPEDITER to record each executable com-
mand entered during a debugging session. The
script dataset can be copied into an INCLUDE
library, a sequential file, or another partitioned
dataset to be used again.

scroll amount area. The furthest right area of the
second line of the source display. It is used to dis-
play the current scroll amount, whenever scrolling
is applicable.

scrollable fields. If a variable’s length exceeds
the screen width, the field becomes scrollable.
Scrollable fields are identifiable by the highlighted
MORE-> message in the line command area. When
the screen is scrolled left or right, only the scrolla-
ble values and their associated column templates
actually move.

 G-5
scrolling. The ability to move the screen window
across the data in any of four directions.

sentence. For COBOL, a sentence is a statement
or group of statements that ends with a period.

session log. A file created and used by XPEDITER
to record each command entered during a debug-
ging session and the responses made to each com-
mand.

session script. A file created by XPEDITER con-
taining the commands entered during a debugging
session. This file can be saved as a member of an
INCLUDE dataset to be used as input to another
debugging session.

Shared Directory. A variable length record VSAM
Relative Record Dataset (RRDS) that contains lan-
guage processor (LP) directory records necessary to
process LP database members.

Source display screen. The XPEDITER screen
used to display the program source. Within this
display screen, XPEDITER commands can be
entered from the command area or by typing over
the compiler-generated statement number. The
data on the screen is scrollable in all four direc-
tions.

source listing. A compiled listing and other
information about a file stored in a source listing
file.

source listing file. A file containing source list-
ings and accessed by DDIO.

split screen. A capability provided by ISPF/PDF
that allows you to partition the display screen into
multiple “logical” areas.

SQL. Structured query language.

stored procedure. A stored procedure is a user-
written program stored at the DB2 server that can
be invoked by a client application. A stored proce-
dure can contain most statements that an applica-
tion program usually contains. A stored procedure
can also execute Structured Query Language (SQL)
statements at the server and application logic for a
specific function. A stored procedure can be writ-
ten in COBOL, Assembler, C, PL/I, or many other
different languages, depending on the platform
where the DB2 server is installed.

structure. A collection of data items.

SUB environment. The XPEDITER/TSO environ-
ment that is used to test stand-alone subroutines
that make IMS database calls.

temporary breakpoint (GOTO). A breakpoint
that occurs after a GOTO command is entered and
before the target paragraph or statement is exe-
cuted. The breakpoint is temporary and provides
the opportunity to ensure that the target state-
ment is the one intended.

test script. A predefined stream of XPEDITER
commands used to set up, run, or rerun a debug-
ging session.

test script library. A partitioned dataset allocated
to the ddname XINCLUDE.

trace breakpoint. A breakpoint set by execution
of the TRACE command in which modules are
traced upon entry and exit.

unit testing subroutines. Testing a subroutine as
a stand-alone program; that is, without the calling
module being present.

user test scripts library. See INCLUDE library.

unattended batch. Processing data without inter-
acting with the debugging session from your ter-
minal. XPEDITER debugging commands are read
from a test script and the output from the test ses-
sion is written to the log.

VCON. V-type address constant. Reserves storage
for the address of a location in a CSECT that lies in
another source module. A VCON is often used to
branch to the specified external address.

VSAM. Virtual Storage Access Method.

wide screen. A terminal screen that is 32 or 43
lines long, and 133 characters wide.

working storage. A section of a COBOL program
used to define the data items that are used in a
program.

Workload Manager (WLM). A component of
MVS used for scheduling and dispatching of work
within an MVS system. WLM is a prerequisite for
the testing and debugging of DB2 stored proce-
dures in an XPEDITER/TSO environment.

XPEDITER/Code Coverage. A product that col-
lects run-time execution data from the
XPEDITER/TSO, XPEDITER/CICS, and
XPEDITER/IMS debuggers to help users analyze,
understand, improve, and document how much of
their code has been tested. Code Coverage inter-
acts with XPEDITER/DevEnterprise to make code
coverage results viewable online and to give users
an idea of where the risk lies in their testing of a
program.

G-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
XPEDITER ISPF interface. The XPEDITER ISPF
interface is a collection of menus, CLISTs or
EXECs, and programs created to assist you in allo-
cating test data and supplying the information
required to start an XPEDITER/TSO or
XPEDITER/IMS debugging session.

XPEDITER/TSO. A symbolic debugging and test-
ing tool used by COBOL, Assembler, PL/I, and C
language programmers to simplify the tasks of
diagnosing and fixing programming errors by giv-
ing the programmer control over the execution of
the program interactively at the source level.

 I-1
Index

Special Characters

./T cards, B-15

A

A (After) breakpoint line command, 3-6
A (Attach) line command

with Batch Connect, 4-26, 8-1, 8-10, B-8
with Batch Connect under ROSCOE, 4-37

AA SNAP command, 4-30, 4-43, 6-1–6-2
abend, G-1
abend script, 4-30, 4-48, 4-50
Abend-AID report, 6-2
Abend-AID Snapshot report, 6-1–6-2, 7-14
abends, 1-4, 4-30, 4-43, 4-50, 7-14

AA SNAP command, 4-30, 4-43, 6-1–6-2
Abend-AID report, 6-1–6-2, 7-14
diagnostic message, 1-4, 7-14
diagnostic summary in log, 6-1
IMS scheduling, 7-13
interception of, 4-30, 5-3, 5-7, 5-11, 5-34, 6-1, 7-14
occurring during batch debugging, 4-30
pinpointing possible causes, 6-1
recording statements leading up to, 6-3
Snapshot report, 6-1–6-3, 6-5

absolute address, G-1
ACBLIB

dataset, C-19
library, B-12, B-16, B-20

Acrobat PDF online documentation, xx
active module, G-1
active source file, G-1
ADABAS, 1-5, 4-18, 9-3
adding statements to program, 5-40, 5-46
address, G-1
address space, G-1
ADSCPDEF, 4-21
ADSIM012, 7-15
after breakpoint, 3-6, 3-9, 5-3–5-4, 5-7, 5-18

automatically set on END, 5-3
automatically set on RETURN, 5-3
set on CALL verb, 5-39
set on module, 5-6
set on paragraph or section name, 5-4
set on statement, 5-4, 5-7

AFTER command, 4-53, 5-3, 5-7, 5-18
ALIAS keyword, 3-7, 5-25–5-26
ALL keyword, 5-32, 5-36
ALLOCATE command, 3-2, 4-18, 4-20, 4-29, 4-39,

5-43, 7-3, 7-15
allocating

DB2 resources, F-4, F-11
from JCL, 4-19
XPIMSDMP DD, 7-15

alphabetic items displayed as characters, 5-14, 5-16

ALTER
INDEX statement, 5-46
STOGROUP statement, 5-46
TABLE statement, 5-46
TABLESPACE statement, 5-46

ALTER keyword, 5-29
altering

control flow
using GOTO command, 5-42
using MOVE command, 5-42

values
displayed by KEEP command, 5-12
displayed by PEEK command, 5-12

alternate entry points, G-1
AMODE, 1-4, 9-1
analyze

data flow, 1-4, 3-7
DB2 applications, 4-3
program structure, 1-4

APARM data from JCL, overriding, C-18
application plan

binding with File-AID for DB2, 4-2, F-1
name, 9-4, B-5, B-13, B-19, B-21, F-3, F-10

applications
batch, 4-18

that issue DB2 database calls, 9-4
that issue IMS/DB database calls, 9-3–9-4, B-19
that process QSAM files, B-4, B-17
that process VSAM files, 9-3, B-4, B-17

dialog, 4-18, B-7
ISPF, 9-4

Hogan BATCHPEM, 4-18, B-17
Hogan BMPPEM, 4-18
Hogan DLIPEM, 4-18, B-19
Hogan IMSPEM, 4-18, B-21, B-34
IMS/DC that make DB2 calls, 9-5
new ID name, B-10
that access shared DL/I databases, 9-5

array, G-1
ASIS keyword, 2-4
assemble, G-1
Assembler language processor, G-1
Assembly language applications, 9-2
assigning addressability to the PSB, B-13
AT command, 5-51–5-52, 5-54
ATM terminal, 7-1, B-25, B-30, B-34
Attention key processing of dependent region,

XPEDITER/IMS, 7-13
Attention key processing under XPEDITER/IMS, 2-4
Automatic Keep function, 2-2, 5-11–5-12, 5-18
automatic Keep window, 2-2, 5-11–5-12

B

B (Before) breakpoint line command, 3-3, 5-3, 5-15,
5-20

background (batch) processing, 4-20, 4-43, 4-46
base address, G-1
base register, G-1
batch, G-1

applications
ADABAS, 1-5, 4-18, 9-3

I-2 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
BMP, 4-18
DB2, 1-5, 4-18, B-11
IDMS/DB, 1-5, 4-18, 9-3
IMS/DB, 1-5, 4-18, 9-3–9-4, B-11
running under Hogan, B-17, B-19
standard, 1-5, 4-18, 9-3, B-4
SUPRA, 1-5, 4-18, 9-3
that make DB2 and IMS/DB calls, 9-4
that make EXEC SQL calls without IMS/DB, 9-4
TIS, 4-18, 9-3
TOTAL, 4-18, 9-3

IMS PROCS, B-12, B-16, B-20, B-24
job

connecting to, 4-26
selecting steps, 4-21
submitting, 4-21

memory requirements, E-1
mode, 1-5, 4-20, 4-43, 4-46
modifying your execution JCL, 4-45

BATCH (option 3), 4-2
Batch Connect facility, 4-20, I-3

commands, 4-29
connection security, 4-26
disconnect terminal, 4-27
editing JCL, 4-26
JCL conversion, 4-28
mode, 4-21
screens

Edit, 4-27
Select Job Step, 4-22

testing multiple job steps, 4-27–4-28
unattended testing, 4-29
under ROSCOE, 4-30

BATCHBTS, 4-48
BATCHDB2, 4-48
BATCHIMS, 4-47
BATCHPEM, 1-6, B-17

applications, 4-18
driver module, 4-18, B-18
environment

option, 4-18, B-1
parameters, B-17

test screen, B-17
BDAM, G-1
before breakpoint, 3-7, 5-3–5-5, 5-7, 5-9, 5-18, 5-20

automatically set on main procedure, 5-3
set on module, 4-49, 5-5–5-6, 5-8–5-9, 9-3
set on paragraph, 5-4
set on statement, 5-7

BEFORE command, 4-53, 5-3, 5-5, 5-7, 5-9, 5-18, 5-20,
9-3

bind, 4-2, F-1
DBRM members and DBRM Libraries screen, F-2,

F-4, F-9, F-12
BMP

databases accessed
DB2, 7-12
Fast Path, 7-12
full function, 7-12
GSAM, 7-7, 7-12

ending debugging session, 7-9
program, 4-18, 7-1–7-2, 7-7, 7-12, B-12, B-14, B-16,

B-20–B-21
message-driven, 7-12
nonmessage-driven, 7-12

region, 1-6, 4-17–4-18, B-30, B-38
BMP/IFP

environment option, 4-18, 7-7, B-1

test screen, B-30
BMPPEM, 1-6, B-19

applications, 4-18
driver, 4-18, B-39
environment option, 4-18, B-1
test screen, B-38

BookManager softcopy documentation, xx
Branch Coverage, G-1
BRANCH keyword, 5-29
breakpoint, G-1
breakpoint commands

AFTER, 5-3–5-4, 5-7, 5-18
BEFORE, 5-3–5-5, 5-7, 5-9, 5-18, 5-20, 9-3
COUNT, 4-54, 5-3, 5-9, 5-24, 5-36

MAX, 5-9
GO, 5-3
GO 1, 5-9, 5-18, 5-44
GO n, 5-8
INTERCEPT, 5-3, 5-6
PAUSE, 5-4, 5-8, 5-11, 5-40
TRACE, 5-11, 5-18, 5-34
WHEN, 5-4, 5-10, 5-18

breakpoints, 1-4
after, 3-6, 3-9, 5-3–5-4, 5-7, 5-18

automatically set on END, 5-3
automatically set on RETURN, 5-3
set on paragraph or section name, 5-4

before, 3-3, 3-7, 5-3–5-5, 5-7, 5-9, 5-18, 5-20, 9-3
automatically set on main procedure, 5-3
set on module, 4-49, 5-8, 9-3

conditional, 5-8–5-11
explicit, 5-4, 5-6
GO 1, 5-18
module-level, 3-7, 5-5
more than one on same source line, 5-7
removing

with DELETE command, 5-3
with RETEST command, 5-7

setting, 3-3, 3-6–3-7, 3-9, 5-4–5-11, 5-20, 9-3
trace, 5-18
when, 5-18

BROWSE command, 5-44
BTS, 1-6, 4-17–4-18, B-14

default Hogan PEM driver, B-24
environment

option, 4-18, 9-5, B-1
parameters, B-14

memory requirements, E-1
test screen, B-14
testing, B-24
Transaction/Program Menu, B-3, B-16, B-24

BTSIN
cards, B-15, B-23
command, B-3, B-16, B-24
dataset, B-15, B-23

buffer allocation
normal, 7-5, 7-8, B-28, B-31, B-36, B-39
overflow, 7-5, 7-8, B-28, B-31, B-36, B-39

BULLETIN (option B), 4-3
bypassing code, 1-4, 5-38

IF sentence, 5-39
using GOTO command, 5-42
using SKIP command, 5-39

 I-3
C

C370 language processor, G-1
CA-Optimizer, 9-2, G-1
CA-Telon code generator, 9-1
call

activities, 5-34
ADABAS, 4-18, 9-3
CBLTDLI, 4-18, 9-3
DB2 database, 9-4, B-11
DL/I, 7-13, 9-5
DLI, 9-3, B-12
dynamic SQL, 4-54, 5-48
EXEC SQL, 5-48, 9-4
IDMS/DB, 4-18, 9-3
IMS/DB, 4-18, 9-3–9-4, B-11, B-19
SUPRA, 4-18, 9-3
TIS, 4-18, 9-3
TOTAL, 4-18, 9-3

CALL keyword, 5-29
called module, 3-7, 5-5, 5-8, 5-34, 5-39
calling module, 3-9, 5-5, 5-34, B-12
cards

./T, B-15, B-23
BTSIN, B-15, B-23

case sensitivity, G-1
CBLTDLI, 4-18, 9-3
CDMF

databases, B-19, B-39
files, B-19, B-39

Checkpoint Restart, 9-1
CICS, G-1

connecting to, 4-56
keyword, 5-29
region, 9-5

class codes
new, 7-10, B-30, B-33, B-38, B-41
old, 7-10, B-30, B-33, B-38, B-41

CLIST, 7-5, 7-8, B-5–B-7, B-9, B-13, B-17, B-19, B-21,
B-24, B-28, B-32, B-36, B-39

CLOSE statement, 5-46
closing Keep window, 3-10
CMS, G-1
COBOL language processor, 3-1, G-1
COBOL structure keywords, 5-29

ALTer, 5-29
BRANCH, 5-29
CALL, 5-29
CICS, 5-29
CONDition, 5-29
DLI, 5-29–5-30
INput, 5-29
IO, 5-29
OUTput, 5-29
PARAgraph, 5-29
SQL, 5-29
using with IN keyword, 5-31

COBOL-structures, H-1
code

bypassing, 5-39, 5-42
class, 7-10, B-29, B-33, B-37, B-40

new, 7-10, B-30, B-33, B-38, B-41
old, 7-10, B-30, B-33, B-38, B-41

generators, 9-1
IOPCB, 9-3

code coverage, G-1

Code Coverage Test? field, 7-5, 7-8, B-5, B-8, B-13,
B-17, B-19, B-21, B-25, B-28, B-32, B-36, B-40

Collection ID field, F-3, F-11
COLOR command, D-3
column template, 5-13, 5-16, G-1
command

area, G-2
CICS, G-2
delimiter, G-2
procedure, B-9

CLIST, B-9
EXEC, B-9

processing, 2-3
stacking, 2-3, G-2

delimiter (semicolon), 2-3
stream, 4-46, 4-50

executing at beginning of session, 4-46, 7-4, 7-8,
B-4, B-7, B-12, B-15, B-18, B-20, B-23, B-27,
B-31, B-35, B-38

executing at end of session, 7-4, 7-8, B-5, B-7,
B-12, B-15, B-18, B-20, B-23, B-27, B-31, B-35,
B-39

COMMAND field, 2-1, 2-3
command-language statement, G-2
commands

AA SNAP, 4-43, 6-1–6-2
AFTER, 4-53, 5-3, 5-7, 5-18
ALLOCATE, 3-2, 4-18, 4-20, 4-29, 4-39, 5-43, 7-3,

7-15
AT, 5-51–5-52, 5-54
BEFORE, 4-53, 5-3, 5-5, 5-7, 5-9, 5-18, 5-20, 9-3
BROWSE, 5-44
BTSIN, B-3, B-16, B-24
COUNT, 4-54, 5-3, 5-9, 5-24, 5-36

MAX, 5-9
DELETE

KEEP, 3-10, 5-14
SKIP, 5-39

DEMO, D-3
DISC, 4-27, I-5–I-6
DLEFT (PF22), 2-3
DLI, 9-3
DOCUMENT, B-4
DOWN (PF8/PF20), 2-3, 7-3, B-3, B-14, B-22, B-26
DRIGHT (PF23), 2-3
DSN RUN, 9-4, B-5
END (PF3/PF15), 2-3, 4-3, 4-55, 5-21, 5-28
EXCLUDE

ALL, 5-32
EXIT (PF4/PF16), 2-3, 3-10, 5-8, 7-2, 7-6, 7-9, 7-13,

B-35
FADB2, 4-29, 5-44

BROWSE, 5-44–5-45
EDIT, 5-44

FIND
BRANCH, 5-29
CICS, 5-29

FIND (PF5), 2-3, 3-8, 5-24
ALIAS, 3-7, 5-25–5-26
ALTER, 5-29
CALL, 5-29
CONDITION, 5-29
CSR (PF14), 2-3, 5-32
DEFINE, 5-24
DIRECT, 5-25
DLI, 5-29–5-30
EXCLUDE, 5-27, 5-30–5-31
IN COBOL-structure keyword, 5-31

I-4 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
INDIRECT (PF17), 2-3, 5-25, 5-27
INPUT, 5-29
IO, 5-29
MODIFY, 5-24
NOALIAS, 5-25
NOLINES, 5-31
NOREDEFINE, 5-25
OUTPUT, 5-29
PARAGRAPH, 5-29
REFERENCE, 5-24
SQL, 5-29
USE, 5-24

GEN, 5-48, 9-4
GO (PF12/PF24), 2-3, 3-3, 3-9, 5-3, 5-7–5-8, 5-20,

5-34, 5-36–5-37, 6-5, 7-2, 7-6
GO 1 (PF9/PF21), 2-3, 3-4, 5-8–5-9, 5-18
GO n, 5-8, 5-37
GO RES, 5-38
GOTO, 5-38, 5-42
GPREGS, 5-11, 5-21, 5-23

OFF, 5-23
HELP (PF1/PF13), 2-2–2-3, 4-3, 6-4, 7-2
INCLUDE, 4-50, 4-53
INSERT, 1-4, 4-54, 5-11, 5-18–5-19, 5-38
INTER, 7-3, 7-9, 7-13, B-3, B-29, B-32, B-37, B-40
INTERCEPT, 4-46–4-47, 5-3, 5-6

INITSCR, 4-49
KEEP, 4-54, 5-10–5-11, 5-13–5-14, 5-18, 5-21, 5-39
LEFT (PF10), 2-3
LOAD, 5-5
LOCATE, D-8
LOCATE * (PF6/PF18), 2-3, 5-12
LOG, 5-34, 6-3, 7-3, B-3
MEMORY, 5-11, 5-21–5-22
MONITOR, 3-9, 5-24, 5-37
MOVE, 4-53, 5-11, 5-19–5-20, 5-38, 5-42
NOLINES, 5-30–5-31
OFF, D-3
ON, D-3
PAUSE, 5-4, 5-8, 5-11, 5-40
PEEK, 3-4, 4-54, 5-11, 5-16, 5-18

CSR (PF2), 2-3, 5-32
LINKAGE, 3-7

PSEUDOSOURCE, 5-4, 5-54
RESTORE, D-3, F-2, F-7, F-9, F-14
RESUME, 3-9, 5-38
RETEST, 5-7–5-9
REVERSE, 3-9, 5-24, 5-37–5-38
RIGHT (PF11), 2-3
RUN, 4-24
SCRIPT, 4-51, B-3
SET

ABENDSCR, 4-30, 4-41, 4-50
ABNDEXIT, 6-5, 7-14
AUTOKEEP, 2-2, 5-12, 5-14, 5-24
CAPS, 2-4
CBLTRAP, 4-49
CMDSIZE, 2-1, 2-3, 5-4
DELAY, 3-9, 5-11
DUMP, 6-5, 7-14
DYNAMIC, 4-40, 4-49, 9-5
EXCLUDE, 4-40, 4-49, 9-6
GEN, 5-48
HEXMODE, 4-40, 4-49
LETRAP, 5-35, 9-7
LOG, 5-18, 5-33
LOGSIZE, 4-40, 4-49, 5-18
LOWCASE, G-2

LOWCASE ASIS, 2-4
NONDISP, 4-40, 4-49, 5-18
PF, 2-3, 4-39
STATIC, 4-40, 4-49, 9-7
STATIC OFF, 9-3
TRANSFER, 4-40, 4-49

SETUP, 3-2, 7-3, B-3, F-2–F-4, F-9, F-11–F-12
SHOW

COUNT, 5-36
FILE, 3-4
IMSFUNC, 9-3
INDEX, 5-15
MODULES, 6-4
PREVIOUS, 5-24, 5-34–5-35

SKIP, 5-39
SOURCE, 5-5–5-6, D-3
SUBMIT, 4-21, 4-24–4-25
SYSIN, B-3, B-18, B-20, B-39
TEST, 4-46–4-47

INITSCR, 4-49
TRACE, 3-9, 4-53, 5-4, 5-11, 5-18, 5-24, 5-34

ALL LABELS, 5-35
MAX, 5-11
MODULES, 5-34

TUTORIAL, D-4
UP (PF7/PF19), 2-3, 7-3, B-3, B-14, B-22, B-26
USE, B-12–B-13
WHEN, 4-54, 5-4, 5-10, 5-18
XPED, 4-46–4-47

COMMENT ON statement, 5-46
COMMIT statement, 5-46
communication area (COMMAREA), G-2
compile, 4-3

bind facility, 4-5, F-1
convert compile JCL, 4-5
date, 2-2
edit allocation list, 4-5
facility, 4-5, 4-8
profile, 4-9
time, 2-2

concatenation, F-6, F-13
XTASKLIB, B-8

CONDITION keyword, 5-29
conditional

breakpoint, 5-8, 5-11
setting, 5-8–5-11

construct, 5-11
expression, 5-10, G-2

CONNECT command, 4-26, 5-3
control

program execution, 3-3, 3-6–3-7
using AFTER command, 5-3, 5-7
using BEFORE command, 5-3, 5-5, 5-7, 5-9, 5-20
using COUNT command, 5-3, 5-9, 5-36
using GO 1 command, 5-9
using GO command, 5-3
using GO n command, 5-8
using INTERCEPT command, 5-3, 5-6
using PAUSE command, 5-4, 5-8, 5-11, 5-40
using TRACE command, 5-4, 5-11, 5-34
using WHEN command, 5-10
with MAX keyword, 5-9

speed of execution, 1-4, 5-11
SYSIN file, B-18, B-20, B-39
test defaults, D-8

conversational transactions, 7-11
conversion from previous release, 4-2
CONVERT INCLUDE, E-4

 I-5
convert JCL to file list, 4-5
CONVERT PROFILE, E-3
converting assembly JCL, 4-5
COUNT command, 4-54, 5-9, 5-24, 5-36

MAX keyword, 5-9
counter field, 5-9, 5-36
CREATE

DATABASE statement, 5-47
INDEX statement, 5-47
STOGROUP statement, 5-47
SYNONYM statement, 5-47
TABLE statement, 5-47
TABLESPACE statement, 5-47
VIEW statement, 5-47

CSECT, B-4, B-12, G-2
CSR scroll amount, 2-2
CSS Utilities, E-3
CTLROUTE, 4-21
current

breakpoint, 2-2, 5-2
execution point, 5-2, 5-7
source display, G-2

customer support, xx
customer support web site, xx

D

D (Delete) line command, 3-10, 5-14, 5-16, 5-40
data

contents
displaying, 3-4, 3-10, 5-11
modifying, 3-7, 5-11

flow, analyzing, 1-4, 3-7
references

DEFine, 5-13, 5-16
MODify, 3-8, 5-13, 5-16
USE, 5-13, 5-16

values
displaying, 3-10
entered in log, 5-18
restored to original state, 3-10

data area, G-2
Data Control Block (DCB), 1-4, 3-4
Data Division, 3-4

defines for data names, 5-24, 5-26
entering D (Display) line command in, 5-16
entering K (Keep) line command in, 5-13
showing variable values, 5-12

DATA field, 7-4, B-27
DATA scroll amount, 2-2
database

ADABAS, 4-18, 9-3
calls, B-11
CDMF, B-19, B-39
DB2

accessed by BMP programs, 7-12
accessed by IFP programs, 7-12
accessed by MPP programs, 7-12

DBT HSSR, 9-3
DL/I, 9-5

shared between CICS region and TSO, 9-5
Fast Path, 7-5, 7-8, B-28, B-31, B-36, B-39

accessed by BMP programs, 7-12
accessed by IFP programs, 7-12
accessed by MPP programs, 7-12

full function

accessed by BMP programs, 7-12
accessed by IFP programs, 7-12
accessed by MPP programs, 7-12

GSAM, 7-7
accessed by BMP programs, 7-7, 7-12

IDMS/DB, 4-18, 9-3
SUPRA, 4-18, 9-3
TIS, 4-18, 9-3
TOTAL, 4-18, 9-3

DATACOM/DB, 4-18
memory requirements, E-1

date/time stamp, G-2
DB2, 1-5

accounting code, 8-5, B-42
allocating resources, F-4, F-11
application plan, 4-2, F-3, F-10

name of, B-5, B-13, B-19, B-21
application plan or package, F-1
authority, F-2, F-7, F-9, F-14
batch program, I-1
database calls, 4-54, B-11
databases, 7-12, 9-3
EXEC SQL statements, 4-18, 5-44–5-45, 5-48, 7-6,

7-8, 9-4, B-5, B-8, B-13, B-17, B-19, B-21, B-25,
B-29, B-32, B-36, B-40

File-AID for DB2, 4-54, 5-46, 9-4, F-1
libraries, B-8
memory requirements, E-1
plan name, 9-4, B-5, B-13, B-19, B-21
program, 4-54
prototype calls, 9-4
prototyping applications, 4-54, 5-40
subsystem name (SSN), 7-6, 7-9, 9-4, B-5, B-8, B-13,

B-17, B-19, B-21, B-25, B-29, B-32, B-37, B-40, F-3,
F-8, F-10, F-16

system ID, 7-6, 7-9, 9-4, B-5, B-8, B-13, B-17, B-19,
B-21, B-25, B-29, B-32, B-37, B-40, F-3, F-8, F-10,
F-16

tables, 4-54, 5-44–5-45
dynamically access, 4-54
inspecting, 5-44

test, 7-6, 7-8, 9-4, B-5, B-8, B-13, B-17, B-19, B-21,
B-25, B-29, B-32, B-36, B-40

DB2 stored procedures, 8-1, I-1, G-2
security considerations, 8-11

DB2 Stored Procedures screen, B-41
DBB program, B-12, B-16, B-20–B-21
DBCS (double-byte character set) support, G-1

mixed data support, G-1
SBCS (single-byte character set) support, G-1

DBD library, 9-3, B-12, B-16, B-20
DBRM

library, F-2, F-4, F-9, F-12
members, F-2, F-4, F-9, F-12
members and DBRM Libraries screen, F-2, F-4, F-9,

F-12
modules, F-6, F-13

DBT HSSR, 9-3
DDIO, G-2
DDIO file, G-2
DDIO file facility, E-3
ddname

SYSUDUMP, 6-5, 7-14
XINCLUDE, 4-49–4-50
XPIMSDMP, 7-15

deallocate, F-4, F-12
debugging

DB2 programs, 4-54, 9-4

I-6 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
EXEC statements, 5-48
IMS subroutines as stand-alone, B-13
sourceless programs, 5-50

commands, 5-52
subroutines, 3-7, 3-9, 9-2

in integration testing mode, 9-2
in unit testing mode, 9-2

transactions, 7-4, 7-8, B-15, B-23, B-27, B-30–B-31,
B-34–B-35

DECIMAL format, 5-14, 5-16–5-17
declaration statement, G-2
declarative, G-2
DECLARE

CURSOR statement, 5-47
STATEMENT statement, 5-47–5-48
TABLE statement, 5-47

decrement occurrences, 5-14
default delimiter, G-2
default settings

PF keys, 2-3, 4-2
profile, 4-2, 4-16, D-5–D-6
screen colors, 4-2, D-3
terminal, 4-2
XPEDITER PF key definitions, D-1

DEFAULTS (option 0), 4-2, D-1
screens

User Profile, 4-16
DEFINE keyword, 5-24
DELETE command

breakpoints, 5-3, 5-7
KEEP keyword, 3-10, 5-14
SKIP keyword, 5-39

DELETE statement, 5-47
DEMO command, D-3
DESCRIBE statement, 5-47–5-48
DFHDRP, 9-5
DFSORT, 9-5
DG (Delete GEN) line command, 5-49
diagnostic

message, 1-4
summary, 6-1

Dialog
environment

option, 4-18, 9-4, B-1
parameters, B-6

function, B-9
test screen, B-6

dialog, 1-5
applications, 4-18, B-7

dimension, G-2
DIRECT keyword, 5-25
directive, G-2
DISC command, 4-27, I-5–I-6
disconnecting terminal, 4-27
displacement, G-2
display

alphabetic items, 5-14, 5-16
available memory, E-1
data values, 3-4, 3-10, 4-54
files currently allocated to TSO region

using SHOW ALLOCATES command, 5-43
linkage section, 3-7
numeric items

DECIMAL, 5-14, 5-16–5-17
FLOAT (COMP-1, COMP-2), 5-14, 5-16
FULLWORD (COMP-4), 5-14, 5-16
HALFWORD (COMP), 5-14, 5-16–5-17
INDEX, 5-14, 5-16

PACKED decimal (COMP-3), 5-14, 5-16–5-17
registers, 1-4, 5-21, 5-23

using GPREGS command, 5-21, 5-23
storage contents, 1-4

using MEMORY command, 5-21–5-22
variables, 1-4, 5-10

using E line command, 5-14, 5-16
using H line command, 5-14, 5-16
using KEEP command, 4-54, 5-14, 5-21
using PEEK command, 5-16

disposition
after the session, C-10
before the session, C-10
of log, C-10
of test script, C-10

DL/I, G-2
call, 7-13, 9-5
program, B-12, B-16, B-20–B-21

DLEFT command, 2-3
DLI command, 9-3
DLI keyword, 5-29–5-30
DLIPEM, 1-6, B-19

driver module, 4-18, B-21, B-24
environment

option, 4-18, B-1
parameters, B-19

test screen, B-19
DOCUMENT command, B-4
document dataset, 4-45, 8-3, B-3, C-9
double-byte character set (DBCS) support, G-1
doubleword, G-2
DOWN command, 2-3, 7-3, B-3, B-14, B-22, B-26
DRIGHT command, 2-3
driver module

BATCHPEM, 4-18, B-18
BMPPEM, 4-18, B-21
DLIPEM, 4-18, B-21
IMSPEM, 4-18, B-24

DROP statement, 5-47
DSECT, G-2
DSN RUN command, 9-4, B-5
DSN, default SSN, F-3, F-8, F-10, F-16
DSNLOAD

library, 7-6, 7-9, 9-4, B-5, B-8, B-13, B-17, B-19,
B-21, B-25, B-29, B-32, B-37, B-40

DSNLOAD DSNAME field, C-15
dump, 7-14, G-2

memory, 6-5, 7-14
duplication factor, G-2

E

E (Display Elementary) line command, 5-14, 5-16
edit

test scripts, 4-50
Edit JCL screen, 4-27
EDIT macro, B-6, B-8
editing and viewing file, 5-44
effective address, G-2
elementary item, 3-7

displaying, 5-16
END command, 2-3, 4-3, 4-55, 5-21, 5-28
enhanced FIND, 3-7, 4-45, 5-33
entry point, B-4, B-12, G-2
environment

guidelines for selecting, 4-18

 I-7
options
BATCHPEM (option 5), 4-18, B-17
BMP/IFP (option 9), 4-18, 7-7
BMPPEM (option 11), 4-18
BTS (option 4), 4-18, 9-5, B-14
Dialog (option 2), 4-18, 9-4, B-6
DLIPEM (option 6), 4-18, B-19
IMS (option 3), 4-18, 9-3–9-4, B-11
IMSPEM (option 10), 4-18, B-34
IMSPEM (option 7), 4-18, B-21
MPP (option 8), 4-18, 7-2
Standard (option 1), 4-18, 9-3–9-4, B-4

environment support, 1-1
31-bit, 9-1
COBOL 85, 9-2
code generators, 9-1
database types, 9-3–9-4
IGZBRIDGE, 9-2
mixed language, 9-2
MIXRES, 9-2
optimized code, 9-2
shared DL/I database, 9-5
sort exit, 9-5
SP, 9-1
VS COBOL II Release 3.1, 9-2
XA, 9-1

error handling, 6-1
ESPIE (macro), 1-8
ESTAE (macro), 1-8
examining files, 5-43–5-44
EXCLUDE command

ALL keyword, 5-32
EXCLUDE keyword, 5-27, 5-30–5-31
EXEC SQL statements, 5-44–5-46, 5-48, 7-6, 7-8, 9-4,

B-5, B-8, B-13, B-17, B-19, B-21, B-25, B-29, B-32,
B-36, B-40

EXECUTE
IMMEDIATE statement, 5-47–5-48
statement, 5-47–5-48

execution, 1-4
arrow, 3-3, 5-2, 5-7, 5-37–5-38
change flow using MOVE command, 5-42
controlling, 3-3, 3-6–3-7, 5-3

speed of, 1-4, 5-11
with use of AFTER command, 5-7
with use of BEFORE command, 5-5, 5-7, 5-9,

5-20, 9-3
with use of COUNT command, 5-9, 5-36
with use of GO n command, 5-8
with use of INTERCEPT command, 5-6
with use of PAUSE command, 5-8, 5-11, 5-40
with use of TRACE command, 5-11
with use of WHEN command, 5-10

environment, 4-16, B-1
guidelines for selecting, 4-17–4-18
Hogan BMPPEM, B-19
Hogan DLIPEM, B-19
XPEDITER/IMS, 4-17, 7-1, B-1, B-25, B-30, B-34,

B-38
XPEDITER/TSO, 4-17, B-1, B-4, B-6, B-11, B-14,

B-17, B-19, B-21
history, 1-4

recording, 5-37
intercepting, 1-4
locating current point, 2-3, 5-2
monitor coverage, 1-4, 5-9, 5-24

using COUNT command, 5-36
using SHOW COUNT command, 5-36

monitor flow of control, 3-9, 5-11, 5-24, 5-34
using SHOW PREVIOUS command, 5-34–5-35
using TRACE command, 5-34

of test scripts, 4-50
at beginning of session (initial script), 4-49, 7-4,

7-8, B-4, B-7, B-12, B-15, B-18, B-20, B-23,
B-27, B-31, B-35, B-38

at end of session (post script), 4-50, 7-4, 7-8, B-5,
B-7, B-12, B-15, B-18, B-20, B-23, B-27, B-31,
B-35, B-39

when abend occurs (abend script), 4-30
operating modes

batch, 4-43, 4-46
interactive, 2-3, 4-49

pausing, 3-3, 3-7, 3-9, 5-3, 5-11
due to abend, 6-3
due to an abend, 4-30
using AFTER command, 5-3–5-4
using BEFORE command, 5-3–5-4, 5-20
using COUNT command, 5-9, 5-36
using GO n command, 5-8–5-9
using INTERCEPT command, 5-3, 5-6
using PAUSE command, 5-4, 5-8, 5-11, 5-40
using TRACE command, 5-11
using WHEN command, 5-4, 5-10

resuming, 2-3, 3-9, 5-3, 5-11
using GO command, 5-3, 5-7–5-8

reverse direction, 1-4, 3-9, 5-37
starting, 1-4, 2-3, 3-2, 5-37
stopping, 1-4, 3-3, 5-10

execution monitor, G-2
exit

debugging session, 2-3, 3-10, 7-6, 7-9
from File-AID for DB2, 4-55
Primary Menu, 4-3
routine for Fast Path, 7-14
when GO 1 command is issued on external proce-

dure statement, 5-8
EXIT (option X), 4-3
EXIT command, 2-3, 3-10, 5-8, 7-2, 7-6, 7-9, 7-13, B-35
EXPLAIN

report, 5-45
statement, 5-47

explicit breakpoint, 5-4, 5-6
explicit declaration, G-2

F

FADB2 command, 4-29
BROWSE keyword, 5-44–5-45
EDIT keyword, 5-44–5-45

Fast Path
databases, 7-5, 7-8, 7-12, B-28, B-31, B-36, B-39
exit routine, 7-14
programs, 4-18, 7-1–7-2, 7-7, 7-12
region, 1-6, 4-17–4-18, B-30

FB (File-AID Browse) line command, A-6, B-8
FE (File-AID Edit) line command, A-6, B-8
FETCH statement, 5-48
figurative constant, G-3
file

allocation list, 7-3, 9-6
CDMF, B-19, B-39
QSAM, 4-18, B-4, B-17
status

I/O, 3-4

I-8 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
VSAM, 1-4
VSAM, 4-18, 9-3, B-4, B-17

file allocation list, 4-3
File Allocation Utility (FAU), 4-18, 7-3, 7-15, 9-3, A-1,

B-17
File List/JCL Member field, 4-18, 7-5, 7-8, B-5, B-7,

B-13, B-17, B-19, B-21, B-24, B-28, B-32, B-36, B-39
File-AID for DB2, 4-3, 4-54, 9-4, F-1, G-3

accessing from within XPEDITER/TSO debugging
session, 4-55

binding DB2 application plan or package, F-1
binding DB2 application plan with XPEDITER/TSO,

4-2
browsing and editing DB2 tables, 5-44–5-45, 9-4
DBRM Libraries screen, F-2, F-4, F-9, F-12
DBRM member, F-6, F-9, F-13
integrated with XPEDITER/TSO, 4-54, 9-4

FIND command, 2-3, 3-8, 5-24
ALIAS keyword, 3-7, 5-25–5-26
ALTER keyword, 5-29
BRANCH keyword, 5-29
CALL keyword, 5-29
CICS keyword, 5-29
CONDITION keyword, 5-29
CSR keyword, 2-3, 5-32
DEFINE keyword, 5-24
DIRECT keyword, 5-25
DLI keyword, 5-29–5-30
EXCLUDE keyword, 5-27, 5-30–5-31
IN COBOL-structure keyword, 5-31
INDIRECT keyword, 2-3, 5-25, 5-27
INPUT keyword, 5-29
IO keyword, 5-29
MODIFY keyword, 5-24
NOALIAS keyword, 5-25
NOLINES keyword, 5-31
NOREDEFINE keyword, 5-25
OUTPUT keyword, 5-29
PARAGRAPH keyword, 5-29
REFERENCE keyword, 5-24
SQL keyword, 5-29
USE keyword, 5-24

finding
COBOL structures, 5-29
data names, 5-24, 5-27, 5-32
string IN COBOL structures, 5-31–5-32

First DBRM Member field, F-3, F-11
First PKLIST Location field, F-3, F-11
FLOAT (COMP-1, COMP-2) format, 5-14, 5-16
format of log entry

for KEEP command, 5-18
for PEEK command, 5-18

FrontLine support web site, xx
full function databases, 7-12
full screen Environments Menu, 4-16, 7-1–7-2, 7-7
fullword, G-3
FULLWORD (COMP-4) format, 5-14, 5-16

G

G (GEN) line command, 5-49
GEN command, 5-48, 9-4
general-purpose registers, 1-4, 5-11, 5-21, 5-23, G-3

displaying, 1-4
generated scripts, saving and using, 4-51
GO 1 command, 2-3, 3-4, 5-8–5-9, 5-18

GO command, 2-3, 3-3, 3-9, 5-3, 5-7–5-8, 5-20, 5-34,
5-36–5-37, 6-5, 7-2, 7-6

GO n command, 5-8, 5-37
GO RES command, 5-38
GOBACK statement

after breakpoint automatically set on, 5-3
when GO 1 command is issued on, 5-8

GOTO command, 5-38, 5-42
GPREGS command, 5-11, 5-21, 5-23

OFF keyword, 5-23
GRANT statement, 5-48
GSAM databases, 7-12
guidelines for selecting environment, 4-18

H

H (Display Hexadecimal) line command, 5-14, 5-16
HALF scroll amount, 2-2
halfword, G-3
HALFWORD (COMP) format, 5-14, 5-16–5-17
HELP command, 2-2–2-3, 4-3, 6-4, 7-2
HELP facility, G-3
hexadecimal format, 5-16
high-level qualifier, D-6
highlighting, 3-8
history of execution, 1-4, 5-37
Hogan

BATCHPEM, 1-6, 4-18, B-17
driver module, 4-18, B-18
environment parameters, B-17

BMPPEM, 1-6
applications, 4-18
driver module, 4-18, B-21, B-39

DLIPEM, 1-6, 4-18, B-19
driver module, 4-18, B-21
environment parameters, B-19

driver, B-18, B-21, B-24, B-36, B-39
BATCHPEM, B-18
BMPPEM, B-21, B-39
DLIPEM, B-21
IMSPEM, B-24, B-36

executing in IMS message region, 1-6
IMSPEM, 1-6, 4-18, B-21, B-24, B-34

applications, 4-18
debug parameters, B-21, B-34
driver module, 4-18, B-24, B-36

PEM driver, B-18, B-21, B-24, B-36, B-39
BATCHPEM, B-18
BMPPEM, B-21, B-39
DLIPEM, B-21
IMSPEM, B-24, B-36

SYSIN dataset, B-3, B-18, B-20, B-39
HTML documentation, xx

I

I (Insert) line command, 5-20, 5-39–5-40
I/O

operations performed, B-12
status, 3-4
terminal, 5-11, 5-34

identifying transactions to be debugged, B-25, B-30,
B-34

IDMS/DB, 1-5, 9-3

 I-9
memory requirements, E-1
IF structure, 3-9

bypassing using SKIP command, 5-39
ELSE construct, 5-11, 5-40
SQL statements allowed within, 5-46

IFP
databases accessed

DB2, 7-12
Fast Path, 7-12
full function, 7-12
GSAM, 7-7

debugging session
ending, 7-9

program, 7-2, 7-7, 7-12
implicit MOVE command (typing over), 5-12, 5-19
IMS, 1-6

driver module, B-13
environment option, 4-18, 9-3–9-4, B-1
logical terminal, 4-17, 7-1, 7-6, 7-9, B-25, B-30, B-34
memory requirements, E-1
region, B-30, B-34

control, 7-11
dependent, 4-17, 7-1, 7-15
message, 1-6, 4-17–4-18, 7-10–7-11, B-25, B-30,

B-33–B-34, B-37, B-41
scheduling abends, 7-13
subroutine, B-13
test screen, B-11, B-34
type of program, 7-10, B-12, B-16, B-20, B-24, B-30,

B-33, B-38, B-41
batch message processing (BMP), 7-2, 7-7, 7-9,

7-12
message processing (MPP), 7-2, 7-12
message-driven Fast Path (IFP), 7-2, 7-7, 7-9, 7-12

IMS User ID Support, 7-5, B-28
IMS User ID/Data Value Intercept Support, 7-4–7-5,

B-27–B-28
IMS USERID field, 7-5, B-28, B-36
IMS/DB, 1-5, 4-18, 9-3

calls, 9-4, B-19
environment parameters, 9-3–9-4, B-11

IMS/DC, 1-6
debugging program under TSO

database calls, B-13
logic calls, B-13
when BTS not available, B-13
when message queue not available, B-13

executing
in BMP region, 1-6, 4-17–4-18, 7-1–7-2, 7-7, 7-12
in Fast Path region, 1-6, 4-17, 7-1–7-2, 7-7, 7-12
in IMS dependent region, 4-17, 7-15
in IMS message region, 1-6, 4-17–4-18, 7-1, B-25

MPP programs, 4-18, 7-2, 7-12, B-14
programs that make DB2 calls, 9-5
using BTS, 1-6, 4-17, 9-5, B-14

IMSPEM, 1-6, B-21, B-34
applications, 4-18
debug parameters, B-21, B-34
driver module, 4-18, B-24, B-36
environment option, 4-18, B-1
test screen, B-21

IN COBOL-structure keyword, 5-31
INCLUDE

dataset, 1-5
library, 4-50, 4-54, B-3, B-35, B-39, G-3
test script, G-3

INCLUDE command, 4-50, 4-53
Include FADB2 DBRMs? field, F-3, F-11

increment occurrences, 5-13
index

boundary, 5-15
change description of, 5-46
create on table, 5-47

INDEX format, 5-14, 5-16
index register, G-3
INDIRECT keyword, 5-25, 5-27
informational message, 2-2, 3-7–3-8, 5-28, 5-31, 7-6
initial script, 4-49, 7-4, 7-8, B-4, B-7, B-12, B-15, B-18,

B-20, B-23, B-27, B-31, B-35, B-38, G-3
INITSCR, 4-49
INPUT keyword, 5-29
INSERT

prior to SKIP command, 5-41
processing, 5-41

valid SQL statements, 5-46
SQL statements, 5-45–5-46, 5-48
statement, 5-48

INSERT command, 1-4, 4-54, 5-11, 5-18–5-19, 5-38
installation libraries, F-6, F-13
integration

testing mode, 9-2
XPEDITER/TSO with File-AID for DB2, 4-54, 5-44–

5-45, F-1
INTER command, 7-3, 7-9, 7-13, B-3, B-29, B-32, B-37,

B-40
Interactive Code Coverage, 4-24–4-25, 4-34, 4-36
Interactive Fast Path, 7-2, 7-9, 7-12
interactive test session

mode, 1-5, 2-3, 4-1, 4-49
starting, 4-1

converting, 4-5
INTERCEPT command, 4-46–4-47, 5-3, 5-6

INITSCR keyword, 4-49
intercepting

execution, 1-4, 5-7
due to abend, 4-30, 6-3
using COUNT command, 5-9
using COUNT MAX command, 5-9
using GO n command, 5-8, 5-18
using INTERCEPT command, 5-3, 5-6
using PAUSE command, 5-4, 5-8, 5-11, 5-40
using TRACE command, 5-11, 5-18, 5-34
using WHEN command, 5-4, 5-10, 5-18
with after breakpoint, 3-6, 3-9, 5-3, 5-18
with before breakpoint, 3-3, 3-7, 5-3, 5-7, 5-18,

5-20
program, 7-4, B-7, B-15, B-23, B-27, B-35

maximum number of times, 7-4, B-7, B-15, B-23,
B-27, B-35

program abends, 5-3, 5-7, 5-11, 5-34, 6-1, 7-14
transactions, 7-4, 7-8, 7-13, B-15, B-23, B-27, B-31,

B-35
intercepts, 5-6, 7-3–7-4, 7-8, 7-13, B-15, B-22–B-23,

B-26–B-27, B-31, B-35
Intercepts screen, 7-9, B-29, B-32, B-37, B-40
intercommunication facilities, G-3
internal format of numeric items

DECIMAL, 5-14, 5-16–5-17
FLOAT, 5-14, 5-16
FULLWORD, 5-14, 5-16
HALFWORD, 5-14, 5-16–5-17
INDEX, 5-14, 5-16
PACKED decimal, 5-14, 5-16–5-17

Internet, Compuware WWW address, xx
intersystem communication, G-3
invoke

I-10 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
debugging session, 4-17, 7-9, B-6, B-14, B-17, B-19,
B-21, B-25, B-32, B-37, B-40

File-AID for DB2, 4-55
XPEDITER/IMS, 4-2, 7-1, B-25, B-30, B-34, B-38
XPEDITER/TSO, 4-2

IO keyword, 5-29
IOPCB code, 9-3
ISPF

dialog programs, 9-1, 9-4, B-6
that make EXEC SQL calls, 9-4

KEYS command, 2-3
items

elementary, 3-7
group, 3-7

J

JCL, 4-45, 7-5, 7-8, B-5, B-7, B-13, B-17, B-19, B-21,
B-24, B-28, B-32, B-36, B-39

jump function, D-6

K

K (Keep) line command, 5-13–5-14
Katakana (Japanese), G-1
KEEP command, 4-54, 5-10–5-11, 5-13–5-14, 5-18,

5-21, 5-39
Keep window, 1-4, 4-53, 5-12–5-13, 5-21, 9-3

modifying values in, 5-12
opening, 5-10, 5-12–5-13, 5-21, 5-38–5-39, 9-3
removing data item from display, 3-10
shown in log, 5-18
viewing data values in, 3-10, 5-12–5-13, 5-21

kept variables entered in log, 5-18
keyboard interrupt, 5-11, 5-34
KEYS command, 2-3
keyword table, H-1

L

label, G-3
LABEL ON statement, 5-48
Language Environment (LE) support, 9-7
language processor, 1-3, 4-2, G-3
last function code, 9-3
LEFT command, 2-3
levels of indirection, 5-27
libraries

ACB, B-12, B-16, B-20
DB2, B-8
DBD, 9-3, B-12, B-16, B-20
DBRM, F-2, F-4, F-9, F-12
DSNLOAD, 7-6, 7-9, 9-4, B-5, B-8, B-13, B-17, B-19,

B-21, B-25, B-29, B-32, B-37, B-40
HELP, 6-4
INCLUDE, 4-50, 4-54, B-3, B-35, B-39
installation, F-6, F-13
PDS, 4-30, 4-50
PSB, 7-8, 9-3, B-12, B-16, B-20, B-24, B-31, B-39
RESLIB, 9-3
test script, 1-5, 4-49–4-50, B-3
user, F-6, F-13

License Management System, G-3
line commands, G-3

A (After breakpoint), 3-6
B (Before breakpoint), 3-3, 5-3, 5-15, 5-20
D (Delete), 3-10, 5-14, 5-40
DE (Delete Elementary), 5-16
DG (Delete Gen), 5-49
DH (Delete Hexadecimal), 5-16
E (Display Elementary), 5-16
FB (File-AID Browse), A-6
FE (File-AID Edit), A-6
G (Gen), 5-49
H (Display Hexadecimal), 5-16
H (Hexadecimal), 5-16
I (Insert), 5-20, 5-39–5-40
K (Keep), 5-13–5-14
P (Peek), 3-4, 5-16

link pack area, G-3
link-edit entry point, B-4, B-12
linkage section, 3-7, 4-52, B-12

displaying, 3-7, 5-11
literal, G-3
load

libraries, 1-5, G-3
modules, 7-3, 7-8, B-4, B-12, B-14, B-22, B-26, B-31,

B-34
LOAD command, 5-5
LOCATE * command, 2-3, 5-12
LOCATE command, D-8
LOCK TABLE statement, 5-48
lockout, F-4, F-11
log, G-3

entry format
for call activities, 5-34
for KEEP command, 5-18
for kept items, 5-18
for PEEK command, 5-18

file, 1-5, 4-54, 5-18, 5-34, 7-6, B-3
LOG command, 5-34, 6-3, 7-3, B-3
logging of execution history, 5-37

turning ON, 5-37
logic flow, 1-4

monitoring, 5-11, 5-34
using SHOW PREVIOUS command, 5-34–5-35
using TRACE command, 5-34

redirecting, 5-42
using GOTO command, 5-42
using MOVE command, 5-42

testing alternative, 5-39
tracing, 1-4, 3-9, 5-24, 5-34

logical terminals
ATM, 7-1, B-25, B-30, B-34
IMS, 4-17, 7-1, 7-6, 7-9, B-25, B-30, B-34
TSO, 4-17, 7-1, 7-6, 7-9, B-25, B-30, B-34

logon region size, 1-6
LOGSIZE, 5-18
loop, testing repeatedly using GOTO command, 5-42
lowercase, 2-4

M

macroinstruction, G-3
main procedure, 3-7

automatic before breakpoint set on, 5-3
entering K(eep) line command in, 5-13
entering P (Peek) line command in, 5-16

 I-11
MAX field, 7-4, B-7, B-15, B-23, B-27, B-35
member list, 7-5, 7-8, B-5, B-7, B-13, B-17, B-19, B-21,

B-24, B-28, B-32, B-36, B-39
memory

available for debugging, E-1
dump, 6-5, 7-14
requirements, E-1

MEMORY command, 5-11, 5-21–5-22
Memory screen, 5-21–5-22
MERGE command, D-7–D-8
Merge Profile screen, E-6
message

area in source display, 2-1–2-2
diagnostic, 1-4
driven

Fast Path (IFP), 7-2, 7-7, 7-12
program, 7-12
transaction, 7-15

informational, 2-2, 3-7–3-8, 5-28, 5-31, 7-6
queue, 7-12, B-12, B-16, B-20

accessing, B-12, B-16, B-20
skipping calls to, B-12, B-16, B-20

region, B-25, B-30, B-34
resulting from bind, F-4, F-11
syntax error, 5-46

message area line, G-3
MOD tag, 3-8
modes

batch, 1-5, 4-43, 4-46
integration testing, 9-2
interactive, 1-5, 2-3, 4-49
nonresponse, 7-11
response, 7-9, 7-11, 7-15
unit testing, 9-2

modify
data contents, 3-5, 5-11
data values, 1-4, 3-5

in Keep window, 3-7, 3-10, 4-53, 5-12–5-13, 5-21
program logic, 5-38

by adding statements, 5-38, 5-40
by forcing logic changes, 5-38, 5-42
using GOTO command, 5-38, 5-42
using INSERT command, 5-38, 5-40
using MOVE command, 5-38, 5-42
using SKIP command, 5-38, 5-41

registers, 1-4, 5-11, 5-21, 5-23
using GPREGS command, 5-21, 5-23

storage contents, 1-4, 5-11, 5-21
using MEMORY command, 5-21–5-23

storage group description, 5-46
variables, 1-4

using KEEP command, 5-13
using PEEK command, 5-16

MODIFY keyword, 5-24
module

breakpoint, 3-7, 5-5
called, 3-7, 5-5, 5-8, 5-34, 5-39
calling, 3-9, 5-5, 5-34, B-12
calls monitored, 5-34
driver, B-18, B-21, B-24

IMS, B-13
object, 9-1
subordinate, B-12

MODULES keyword, 5-34
monitor

all executed statements, 5-34
DLI

activities, 9-3

calls, 9-3
execution coverage, 1-4, 5-9, 5-24

using COUNT command, 5-36
using SHOW COUNT command, 5-36

flow of control for program, 5-11, 5-34
using SHOW PREVIOUS command, 5-34–5-35
using TRACE command, 5-34

loops, 1-4, 5-42
module calls, 5-34
procedure calls, 1-4

MONITOR command, 3-9, 5-24, 5-37
MORE-> sign, 5-13, 5-16
MOVE command, 4-53, 5-11, 5-19–5-20, 5-38, 5-42
MOVE statement, 3-7
MPP

databases accessed, 7-12
debug parameters, B-30, B-38
debugging session, 7-13
environment

option, 4-18, 7-2, B-1
parameters, B-25

IMS/DC programs, 4-18
programs, 7-2, 7-12, B-12, B-14
test screen, B-25

MQSeries, G-3
multiple

breakpoints on same line of code, 5-7, 5-49
debugging session within same job stream, 4-47
transaction codes, 7-4, 7-8, B-15, B-23, B-27

multiregion operation, G-4
MVS, G-4

N

native CMS, G-4
native TSO, G-4
NBA, 7-5, 7-8, B-28, B-31, B-36, B-39
NEWAPPL, B-10
NEWPOOL, B-10
NOALIAS keyword, 5-25
NOLINES command, 5-30–5-31
NOLINES keyword, 5-31
non-Wait-For-Input (non-WFI) transactions, 7-9, 7-11
nonconversational transactions, 7-11
nonmessage-driven program, 7-12
nonrepresentable characters, G-4
nonresponse mode, 7-11
NOQ environment, G-4
NOQ PARM passing option, B-13
NOREDEFINE keyword, 5-25
Normal Buffer Allocation (NBA), 7-5, 7-8, B-28, B-31,

B-36, B-39
notation rules, xviii

O

OBA, 7-5, 7-8, B-28, B-31, B-36, B-39
object module, 9-1, G-4
occurrence, 3-5

field, 5-13, 5-16
modifying, 3-5
of program invocation, 7-4, B-7, B-15, B-23, B-27,

B-35
OFF command, D-3

I-12 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
offline DL/I batch processing region, B-12, B-16, B-20
offset, G-4
ON command, D-3
OPEN statement, 5-48
opening Keep window, 5-12–5-13, 5-21, 5-38–5-39
operating environment support, 1-1
operating system, 9-1, G-4
OPT field, B-7, B-9
OPTIMIZE compiler option, 9-2
options, color, D-3–D-4
OUTPUT keyword, 5-29
output of debugging session, 1-5

data files, 1-5
session log, 1-5, 7-6, B-3
session script, 1-5, 4-49, B-3

Overflow Buffer Allocation (OBA), 7-5, 7-8, B-28, B-31,
B-36, B-39

override default maximum limit, 5-11, D-1
Owner of Plan field, F-4, F-12

P

P (Peek) line command, 3-4, 5-16
PA keys, G-4
Package ID field, F-3, F-11
PACKED decimal (COMP-3) format, 5-14, 5-16–5-17
PAGE scroll amount, 2-2
panels, G-4
PANEXEC support, 9-7
paragraph, G-4
PARAGRAPH keyword, 5-29
parameter

optional to be passed to program, B-9
run-time, B-5, B-18

PARM, B-9
list, B-12, B-16, B-24
passing options, B-13, B-16
string, 7-5, 7-8, B-5, B-13, B-16, B-18, B-28, B-31,

B-36, B-39
PASSLIB, B-10
PAUSE command, 5-4, 5-8, 5-11, 5-40
pausing, G-4
PC account code, 8-3, 8-5, B-42
PCB, B-12, G-4
PDF documentation, xx
PEEK command, 3-4, 4-54, 5-11, 5-16, 5-18

CSR keyword, 2-3, 5-32
LINKAGE keyword, 3-7

PF keys
PF1 (HELP), 2-2–2-3, 4-3
PF10 (LEFT), 2-3
PF11 (RIGHT), 2-3
PF12 (GO), 2-3, 3-3, 3-9, 5-7, 5-11, 5-20, 5-34, 5-36–

5-37, 6-5, 7-6
PF13 (HELP), 2-3
PF14 (FIND CSR), 2-3
PF15 (END), 2-3
PF16 (EXIT), 2-3
PF17 (FIND INDirect), 2-3, 5-25, 5-27
PF18 (LOCATE *), 2-3
PF19 (UP), 2-3, B-22, B-26
PF2 (PEEK CSR), 2-3
PF20 (DOWN), 2-3, B-22, B-26
PF21 (GO 1), 2-3
PF22 (DLEFT), 2-3
PF23 (DRIGHT), 2-3

PF24 (GO), 2-3, 5-7
PF3 (END), 2-3, 4-3, 5-21, 5-28
PF4 (EXIT), 2-3, 3-10, 5-8, 7-6, 7-9, B-35
PF5 (FIND), 2-3, 5-24
PF6 (LOCATE *), 2-3, 5-12
PF7 (UP), 2-3, 7-3, B-14, B-22, B-26
PF8 (DOWN), 2-3, 7-3, B-14, B-22, B-26
PF9 (GO 1), 2-3, 3-4, 5-8

PL/I language processor, G-4
plan

name, 9-4, B-5, B-13, B-19, B-21, F-3, F-10
table, F-4, F-12

PMAP, 5-41
PMAP/LIST information generated at compile time,

9-2
post script, 4-48, 4-50, 7-4, 7-8, B-5, B-7, B-12, B-15,

B-18, B-20, B-23, B-27, B-29, B-31, B-35, B-39
predefined command stream, 4-46, 4-50, 7-4, 7-8, B-4–

B-5, B-7, B-12, B-15, B-18, B-20, B-23, B-27, B-31,
B-35, B-38–B-39

PREPARE statement, 5-48
preparing your program, 4-3

bind facility, 4-5, F-1
convert compile JCL, 4-5
edit allocation list, 4-5

primary command line, 2-1, 2-3
primary commands, G-4
Primary Menu options, 4-1

option 0 (DEFAULTS), 4-2, D-1
option 1 (PREPARE), 3-2, 4-2, 4-18
option 2 (TSO), 4-2, 4-16, 7-1
option 3 (BATCH), 4-2
option 4 (STORED PROCEDURES), 4-2
option 5 (UTILITIES), 4-2, E-1
option B (BULLETIN), 4-3
option C (CODE COVERAGE), 4-3
option CS (CICS), 4-3
option F (FADB2), 4-3
option FA (FILE-AID), 4-3
option FI (FILE-AID/IMS), 4-3
option T (TUTORIAL), 4-3
option X (EXIT), 4-3

procedure, G-4
Procedure Division

modifications for data names, 5-24, 5-26
uses for data names, 5-24, 5-26

procedure division, G-4
Process DB2 Stored Procedures screen, 8-4, I-1
Process Execute JCL screen, 8-6, I-1
processing

batch, 1-2, 4-20, 4-43, 4-46
interactive, 1-2, 4-15

product support, xx
profile, 4-2

handling facility, 1-5, 4-16
multiple, 1-5
user, D-6

program
abends, 4-30, 4-50, 5-3, 5-7, 6-1

before dump is produced, 5-3, 6-1, 6-5
intercepted by XPEDITER/IMS, 7-14
intercepted by XPEDITER/TSO, 5-11, 5-34, 6-1

analyzing structure of, 1-4
logic, 5-38

modifying, 5-38
redirecting flow, 5-42

name, 4-16, 7-3, 7-8, 7-10, B-4, B-7, B-9, B-12, B-14,
B-22, B-26, B-30–B-31, B-33–B-34, B-38, B-41

 I-13
specification block (PSB), 7-8, 7-10, 7-13, B-12,
B-20, B-30–B-31, B-33, B-38–B-39, B-41
field, 7-8, B-12, B-20, B-31, B-39
library, 9-3, B-12, B-16, B-20
name, 7-10, B-30, B-33, B-38, B-41

that accesses DL/I databases, 9-5
types, 7-10, B-12, B-16, B-20, B-24, B-30, B-33, B-38,

B-41
batch message processing (BMP), 7-2, 7-7, 7-12,

B-12, B-14, B-16, B-20–B-21, B-24
DBB, B-12, B-16, B-20–B-21
DL/I, B-12, B-16, B-20–B-21
IMS/DC, 7-1, 9-5, B-14
message processing (MPP), 7-2, 7-12, B-14, B-24
message-driven Fast Path (IFP), 7-2, 7-7, 7-12

variables
displaying, 5-13, 5-16, 5-21
modifying, 5-16

program execution
controlling, 3-3
displaying variables

by typing over (implicit move), 5-19
using GPREGS command, 5-23
using KEEP command, 5-13
using MEMORY command, 5-21
using MOVE command, 5-19–5-20, 5-42
using PEEK command, 5-16

pausing, 5-11
at after breakpoint, 3-6, 3-9, 5-3, 5-18
at before breakpoint, 3-3, 3-7, 5-3, 5-7, 5-18, 5-20
due to COUNT command, 5-9
due to GO n command, 5-3, 5-8–5-9, 5-18
due to INTERCEPT command, 5-3, 5-6
due to PAUSE command, 5-4, 5-8, 5-11, 5-40
due to TRACE command, 5-11, 5-18, 5-34
due to WHEN command, 5-4, 5-10, 5-18

selecting environment, 4-16
guidelines for, 4-18
XPEDITER/IMS, 4-17, 7-1, B-25, B-30, B-34, B-38
XPEDITER/TSO, 4-17

suspending
after program is completed, 5-3
after set number of statements or labels are exe-

cuted, 5-3, 5-8
after statement, paragraph, or module, 5-3–5-4,

5-6–5-7
before main procedure statement, 5-3, 5-7
before statement, paragraph, or module, 5-4–

5-7, 5-20
due to abend, 6-3
when requested by keyboard interrupt, 5-11
when set limit is reached, 5-9, 5-11
when specified condition occurs, 5-4, 5-10
within inserted block of code, 5-4

prototype DB2 applications, 4-54, 5-40, 9-4
PSEUDOSOURCE command, 5-4, 5-54
PSW, G-4

Q

QSAM files, 4-18, B-4, B-17
qualification rules, 5-5
query

available region size, 4-2, E-1
COBOL statements, 5-24

Quickstart, G-4

R

recalling previous command, 2-3
recording execution history, 5-37
redirecting logic flow

using GOTO command, 5-42
using MOVE command, 5-42

reduced lockout situations, F-4, F-11
REFERENCE keyword, 5-24
region, E-1

BMP, 1-6, 4-17–4-18, B-30, B-38
CICS, 9-5
Fast Path, 1-6, 4-17–4-18, B-30
IMS, B-30

control, 7-10–7-11, B-30, B-33, B-37, B-41
dependent, 4-17, 7-1, 7-15
message, 1-6, 4-17–4-18, 7-5, 7-8, B-25, B-28,

B-30–B-31, B-34, B-36, B-39
MPP, 4-18
offline DL/I batch processing, B-12, B-16, B-20

using ACB libraries, B-12, B-16, B-20
using DBD libraries, B-12, B-16, B-20
using PSB libraries, B-12, B-16, B-20

size, 1-6
TSO, 9-1, 9-5

register, 1-4, G-4
general-purpose, 1-4, 5-11, 5-21, 5-23
window, 5-21, 5-23

removing from display, 5-23
regression testing, 4-49
reinstate all installed default values, F-2, F-7, F-9, F-14
related publications, xviii
relational condition, 5-10
Release field, F-4, F-11

commit, F-4, F-11
deallocate, F-4, F-12

removing
breakpoints from display, 5-7
display resulting from PEEK commands, 5-14
Keep window from display, 3-10
lines from source display, 5-32
register window from display, 5-23

RENT, 4-50
RESLIB library, 9-3
response mode, 7-9, 7-11, 7-15
RESTART, 9-1
RESTORE command, D-3, F-2, F-7, F-9, F-14
restrictions, 1-6, 9-4, 9-7, A-20
RESUME command, 3-9, 5-38
resuming execution, 2-3, 5-3, 5-7–5-8, 5-11
retain breakpoints, B-16
Retain Breakpoints? field, 7-5, B-28
RETEST command, 5-7–5-9
return code, 9-3
return control

to calling program, 3-9, 5-5
to you, 5-40

REVERSE command, 3-9, 5-24, 5-37–5-38
review

log, 5-38
mode, 1-4, 3-9, 5-37

review mode, G-4
REVOKE statement, 5-48
RIGHT command, 2-3
RMODE, 1-4, 9-1
ROLLBACK statement, 5-48

I-14 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
ROUTE PRINT LOCAL card into JCL job stream, 4-21
RUN command, 4-24
run-time

error handling, 6-1
parameter, B-5, B-18

S

Sage APS code generator, 9-1
sample programs

TRIMAINP, 3-1, 3-4, 3-7, 5-5, 5-7–5-8, 5-14, 5-16
TRIRPTP, 3-2, 5-6
TRITSTP, 3-2, 3-7, 3-9, 5-5, 5-8–5-9, 5-39

saving and using generated scripts, 4-51
SBCS (single-byte character set support), G-1
scope terminator, 5-41
screen format, 2-1
screens, 2-1, G-4

Allocate, 7-3
BTSIN, B-3, B-16, B-24
DBRM Libraries, F-2, F-4, F-9, F-12
Environments Menu, 4-16–4-17

BATCHPEM (option 5), 4-18
BMP/IFP (option 9), 4-18, 7-1, 7-7
BMPPEM (option 11), 4-18
BTS (option 4), 4-18, 9-5
Dialog (option 2), 4-18, 9-4
DLIPEM (option 6), 4-18
IMS (option 3), 4-18, 9-3–9-4
IMSPEM (option 7), 4-18
MPP (option 8), 4-18, 7-1–7-2
Standard (option 1), 4-18, 9-3–9-4

Intercepts, 7-9, B-29, B-32, B-37, B-40
Invoke Dialog Function/Selection Panel, B-8
Log, 5-18, 5-34, 7-6, B-3
Memory, 5-21–5-22
Script, B-3
setting color defaults, D-3
Setup, 4-50, 7-3, 9-3, B-3
Show, 5-35, 6-4
Source, 2-1
test, B-1

BATCHPEM (option 5), B-17
BMP/IFP (option 9), 7-7, B-30
BMPPEM (option 11), B-38
BTS (option 4), 9-5, B-14
DB2 Stored Procedures (option 12), B-41
Dialog (option 2), 9-4, B-6
DLIPEM (option 6), B-19
IMS (option 3), 9-3–9-4, B-11
IMSPEM (option 10), B-34
IMSPEM (option 7), B-21
MPP (option 8), 7-2, B-25
Standard (option 1), 9-3–9-4, B-4

Utilities Menu, E-1
XPPISPFT, B-7–B-8

SCRIPT command, 4-51, B-3
script dataset/file, G-4
script file, 4-49–4-50
scroll amount field, 2-1, G-4
scrollable fields, G-4
scrolling, B-3, G-5
Select Job Step screen, 8-7, 8-10, I-2
SELECT statement, 5-48
selecting testing environment, 4-1, 4-16

guidelines for, 4-18

sentence, G-5
session

executing predefined command stream, 4-46, 4-50
at beginning of session, 4-46, 4-49, 7-4, 7-8, B-4,

B-7, B-12, B-15, B-18, B-20, B-23, B-27, B-31,
B-35, B-38

at end of session, 7-4, 7-8, B-5, B-7, B-12, B-15,
B-18, B-20, B-23, B-27, B-31, B-35, B-39

execution environment, 4-16, 4-18, B-1
Hogan BMPPEM, B-19
Hogan DLIPEM, B-19
Hogan IMSPEM, B-21, B-34
XPEDITER/IMS, 7-1, B-25, B-30, B-34, B-38
XPEDITER/TSO, B-4, B-6, B-11, B-14, B-17, B-19

exiting from, 3-10, 7-6, 7-9
initiating, 7-9, B-4, B-6, B-11, B-14, B-17, B-19, B-21,

B-25, B-30, B-32, B-34, B-37–B-38, B-40–B-41
log, 1-5, 5-18, 5-34, 7-6, B-3, G-5
multiple within same job stream, 4-47
preparation for, 4-1
quick sample of, 3-1
script, 1-5, 4-49–4-50, B-3, G-5

abend, 4-30
initial, 4-49, 7-4, 7-8, B-4, B-7, B-12, B-15, B-18,

B-20, B-23, B-27, B-31, B-35, B-38
post, 4-50, 7-4, 7-8, B-5, B-7, B-12, B-15, B-18,

B-20, B-23, B-27, B-31, B-35, B-39
setting up test screens for, B-4, B-6, B-11, B-14, B-17,

B-19, B-21, B-25, B-30, B-34, B-38, B-41
set

breakpoints, 3-3, 5-3
before, 3-3, 3-7, 5-4–5-5, 5-7, 5-9, 5-20, 9-3
on subroutines, 9-3
using AFTER command, 3-6, 3-9, 5-4, 5-7
using COUNT command, 5-9
using COUNT MAX command, 5-9
using GO n command, 5-8–5-9
using INTERCEPT command, 5-6
using PAUSE command, 5-8, 5-11, 5-40
using TRACE command, 5-11, 5-34
using WHEN command, 5-10
when specified event takes place, 5-8, 5-10–5-11

conditional breakpoints, 5-8
using COUNT command, 5-8–5-9, 5-36
using COUNT MAX command, 5-9
using GO n command, 5-8–5-9
using PAUSE command, 5-8, 5-11, 5-40
using TRACE command, 5-8, 5-11
using WHEN command, 5-8, 5-10

counters on
statements, 1-4, 5-9

explicit breakpoints
at specific statement number, 5-7
for modules, 5-5, 5-9
using AFTER command, 5-4, 5-7
using BEFORE command, 5-4, 9-3
using INTERCEPT command, 5-4, 5-6

speed of execution, 5-11
statement, 5-48

SET command
ABENDSCR keyword, 4-30, 4-41, 4-50
ABNDEXIT keyword, 6-5, 7-14
AUTOKEEP keyword, 2-2, 5-12, 5-14, 5-24
CAPS keyword, 2-4
CBLTRAP keyword, 4-49
CMDSIZE keyword, 2-1, 2-3, 5-4
DELAY keyword, 3-9, 5-11
DUMP keyword, 6-5, 7-14

 I-15
DYNAMIC keyword, 4-40, 4-49, 9-5
EXCLUDE keyword, 4-40, 4-49, 9-6
GEN keyword, 5-48
HEXMODE keyword, 4-40, 4-49
LETRAP keyword, 5-35, 9-7
LOG keyword, 5-18, 5-33
LOGSIZE keyword, 4-40, 4-49, 5-18
LOWCASE ASIS keyword, 2-4
LOWCASE keyword, G-2
NONDISP keyword, 4-40, 4-49, 5-18
PF keyword, 2-3, 4-29, 4-39
STATIC keyword, 4-40, 4-49, 9-7
STATIC OFF keyword, 9-3
TRANSFER keyword, 4-40, 4-49

SET commands, using, D-8
Setup

Menu, 8-6
options screens, 4-50, 7-3, 9-3, B-3, B-12, B-16, B-24

SETUP command, 3-2, 7-3, B-3, F-2–F-4, F-9, F-11–F-12
shared

DL/I database, 9-5
variable pool, B-10

Shared Directory, G-5
short message, 2-2
SHOW

DCBs, 3-4
file status, 3-4

Show
screen, 5-35, 6-4

show
called module stacking, 1-4
DCBs, 1-4
file status, 1-4
implied breakpoints, 5-35
link-edit map of load modules, 6-4

SHOW command
ALLOCATE keyword, 5-43
COUNT keyword, 5-36
FILE keyword, 3-4
IMSFUNC keyword, 9-3
INDEX keyword, 5-15
MODULES keyword, 6-4
OPTIONS keyword, D-8
PREVIOUS keyword, 5-24, 5-34–5-35
SETS keyword, D-8

single-byte character set (SBCS) support, G-1
SKIP command, 5-39

cautions when using, 5-39
in combination with INSERT command, 5-41
removing, 5-39

skipping code, 1-4, 5-39, 5-41
IF sentence, 5-39
statement that sets switch or flag, 5-39

Snapshot report, 6-1–6-3, 6-5, 7-14
softcopy documentation, xx
sort exit

for DFSORT, 9-5
for SYNCSORT, 9-5

source
file, active, 2-1–2-2
program

editing, 5-40
guidelines for selecting environment, 4-18
removing all lines from display, 5-32
selecting environment in which to execute, 4-16

SOURCE command, 5-5–5-6, D-3
source listing, G-5
source listing file, G-5

Source Listing File Facility, E-3
Source screen, 2-1, I-4, G-5

inserting commands, 5-40
removing lines from, 5-32

sourceless debugging, 5-50
speed of execution, 1-4

controlling, 1-4, 5-11
SPIE (macro), 1-8
split screen, G-5
SQL, G-5

error messages, 5-46
keyword, 5-29
statements

ALTER INDEX, 5-46
ALTER STOGROUP, 5-46
ALTER TABLE, 5-46
ALTER TABLESPACE, 5-46
calls, 5-48
CLOSE, 5-46
COMMENT ON, 5-46
COMMIT, 5-46
CREATE DATABASE, 5-47
CREATE INDEX, 5-47
CREATE STOGROUP, 5-47
CREATE SYNONYM, 5-47
CREATE TABLE, 5-47
CREATE TABLESPACE, 5-47
CREATE VIEW, 5-47
DECLARE CURSOR, 5-47
DECLARE STATEMENT, 5-47–5-48
DECLARE TABLE, 5-47
DELETE, 5-47
DESCRIBE, 5-47–5-48
DROP, 5-47
dynamically execute, 5-45
EXEC, 5-48
EXECUTE, 5-47–5-48
EXECUTE IMMEDIATE, 5-47–5-48
EXPLAIN, 5-47
FETCH, 5-48
GRANT, 5-48
INSERT, 5-48
inserting into source program, 5-45
LABEL ON, 5-48
LOCK TABLE, 5-48
OPEN, 5-48
PREPARE, 5-48
processing, 5-44
REVOKE, 5-48
ROLLBACK, 5-48
SELECT, 5-48
SET, 5-48
UPDATE, 5-48
valid in debugging session, 5-46–5-47

SSN (DB2 subsystem name), 9-4, F-3, F-8, F-10, F-16
STAE (macro), 1-8
Standard

environment
option, 4-18, 9-3–9-4, B-1
parameters, B-4

test screen, B-4
START field, 7-4, B-7, B-15, B-23, B-27, B-35
starting execution, 1-4
statements

CALL, 5-8, 5-39
DB2, 4-18, 9-4

I-16 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
EXEC SQL, 4-18, 5-44–5-46, 5-48, 7-6, 7-8, 9-4, B-5,
B-8, B-13, B-17, B-19, B-21, B-25, B-29, B-32, B-36,
B-40

EXIT PROGRAM, 5-8
GOBACK, 5-3, 5-8

breakpoints set on, 5-3
inserting into program, 1-4, 5-11

GOTO command, 5-40
MOVE command, 5-20, 5-40
PAUSE command, 5-40
PEEK command, 5-40
SQL statements, 5-40, 5-45–5-46, 9-4

MOVE, 3-7, 9-2
PERFORM, 9-2
setting counters on, 5-9, 5-36
SQL

dynamically executing, 4-54, 5-45
inserting into source program, 5-40, 5-45–5-46,

9-4
processing, 5-44

STOP RUN, 5-3
breakpoints set on, 5-3

Status screen, I-3
status, active, 2-1–2-2, 3-3, 3-9, 5-2, 5-7
STD PARM passing option, B-13, B-16
Step Restart, 9-1
Stop Region Facility, 7-15
STOP RUN statement, after breakpoint automatically

set on, 5-3
stopping execution, 1-4, 3-3, 5-10
storage, 1-4

contents, displaying, 5-11, 5-21–5-22
group

change description of, 5-46
define, 5-47

location, 5-26
stored procedure, G-5
structure, G-5
SUB environment, G-5
SUB PARM passing option, B-13
Submit Bind Method field, F-3, F-8, F-10, F-16
SUBMIT command, 4-21, 4-24–4-25
subordinate module, B-12
subroutines, 3-7

debugging, 3-7, 3-9
IMS as stand-alone, B-13
in integration testing mode, 9-2
in unit testing mode, 9-2
stand-alone, 9-2

Linkage Section of, B-12
TRIRPTP, 4-52, 5-6
TRITSTP, 3-9, 5-5, 5-8–5-9

subscript boundaries, 5-15
SUPRA, 1-5, 4-18, 9-3
SYNCSORT, 9-5
SYSIN

command, B-3, B-18, B-20, B-39
dataset, B-3, B-18, B-20, B-39

System 2000, 4-18
System field, 7-6, 7-9, 9-4, B-5, B-8, B-13, B-17, B-19,

B-21, B-25, B-29, B-32, B-37, B-40
SYSUDUMP, 6-5

T

table

browse, 5-15
by typing over OCCURS field, 5-13

changing contents of, 5-46
formatted, 5-13, 5-16

tape files for Batch Connect, 1-3
TCP/IP address, 8-5, B-42
temporary breakpoint (GOTO), G-5
terminal

ATM, 7-1, B-25, B-30, B-34
color, D-3
I/O, 5-11, 5-34
IMS, 4-17, 7-1, 7-6, 7-9, B-25, B-30, B-34
TSO, 4-17, 7-1, 7-6, 7-9, B-25, B-30, B-34

test
ABENDSCR command, 4-30, 4-50
alternative logic flow, 5-39, 5-42
docedit, B-3
fixes, 5-40
loop using GOTO command, 5-42
mode

integration, 9-2
unit, 9-2

screens
BATCHPEM (option 5), B-17
BMP/IFP (option 9), 7-1, 7-7, B-30
BMPPEM (option 11), B-38
BTS (option 4), 9-5, B-14
BTSIN, B-16, B-24
DB2 Stored Procedures (option 12), B-41
Dialog (option 2), 9-4, B-6
DLIPEM (option 6), B-19
IMS (option 3), 9-3, B-11
IMSPEM (option 10), B-34
IMSPEM (option 7), B-21, B-34
Intercepts, 7-3–7-4, 7-8–7-9, 7-13, B-3, B-7, B-15,

B-22–B-23, B-26–B-27, B-29, B-32, B-35, B-37,
B-40

Log, 5-18, 5-34, 7-6
MPP, 7-2
MPP (option 8), 7-1–7-2, B-25
Setup Menu, 4-50, 9-3
Standard (option 1), 9-3–9-4, B-4
SYSIN dataset, B-3, B-18, B-20, B-39

script, 1-5, 4-48–4-50, B-3
abend, 4-30, 4-50
editing, 4-50
examples, 4-51, 4-53
initial, 4-49, 7-4, 7-8, B-4, B-7, B-12, B-15, B-18,

B-20, B-23, B-27, B-31, B-35, B-38
library, 1-5, 4-30, 4-49–4-50
post, 4-50, 7-4, 7-8, B-5, B-7, B-12, B-15, B-18,

B-20, B-23, B-27, B-31, B-35, B-39
saving and using, 4-51

TEST command, 4-46–4-47
INITSCR keyword, 4-49

test script, G-5
test script library, G-5
testing environments, 4-1
TIS, 4-18, 9-3
Title field, 2-1
TOGGLE command, 5-21
TOTAL, 4-18, 9-3
trace

call activities, 5-34
execution, 5-34

in reverse direction, 1-4, 3-9, 5-37
logic flow, 3-9, 5-11, 5-34
paused, 3-9, 5-11, 5-40

 I-17
logic flow, 3-9, 5-11, 5-34
trace breakpoint, G-5
TRACE command, 3-9, 4-53, 5-4, 5-11, 5-18, 5-24, 5-34

ALL LABELS keyword, 5-35
MAX keyword, 5-11
MODULES keyword, 5-34

transaction, B-15, B-23
BTS, B-3
code, 7-4, 7-8, 7-10, B-15, B-23, B-27, B-30–B-31,

B-33, B-35, B-37, B-39, B-41
BMP, 7-13
IFP, 7-13
MPP, 7-13

conversational, 7-11
driven BMP programs, 4-18
identifying for debugging, B-30, B-34
intercepted by XPEDITER/IMS, 7-13, B-3
intercepted by XPEDITER/TSO, 7-4, 7-8, B-15, B-22–

B-23, B-26–B-27, B-31, B-35
message-driven, 7-15
non-Wait-For-Input (non-WFI), 7-9, 7-11
nonconversational, 7-11
optimal IMS input code, B-39
Wait-For-Input (WFI), 7-11

BMP, 7-13
IFP, 7-13
MPP, 7-13

TRIJCLST, I-2
TRIMAINP program, 3-1, 3-4, 3-7, 3-9, 5-5, 5-7–5-8,

5-14, 5-16
TRIRPTP program, 3-2, 4-52, 5-6
TRITST for module qualification, E-4
TRITSTP program, 3-2, 3-7, 3-9, 5-5, 5-8–5-9, 5-39
TSO

address space, 4-17, 7-1, B-25, B-30, B-34
ALLOCATE command, 5-43
logical terminal, 4-17, 7-1, 7-6, 7-9, B-25, B-30, B-34
logon region size, 1-6
memory requirements, E-1
region, 9-1, 9-5

TSO (option 2), 4-2, 4-16, 7-1
Environments Menu, 4-16, B-1

guidelines for selecting environment, 4-18, 7-1,
7-7

tutorial, 4-3
color defaults, D-4

TUTORIAL (option T), 4-3
TUTORIAL command, D-4
type of program, 7-10, B-30, B-33, B-38, B-41

Hogan
BMP, B-21
DBB, B-21
DL/I, B-21

IMS, B-12, B-16, B-20, B-24
BMP, 7-2, 7-7, 7-12, B-12, B-16, B-20
DBB, B-12, B-16, B-20, B-24
DL/I, B-12, B-16, B-20
IFP, 7-2, 7-7, 7-12
MPP, 7-2, 7-12

typing over values (implicit move), 5-19
displayed by PEEK command, 5-12
in Keep window, 5-12, 5-19
in OCCURS field, 5-13, 5-16
in register window, 5-21, 5-23

U

unattended batch, G-5
Unattended Code Coverage, 4-24–4-25, 4-34, 4-36
unit testing mode, 9-2
unit testing subroutines, G-5
unwanted code, bypassing, 5-39
UP command, 2-3, 7-3, B-3, B-14, B-22, B-26
update

Keep window, 3-7
by typing over (implicit move), 5-12, 5-19
using MOVE command, 5-12, 5-19

statement, 5-48
uppercase, 2-4, 4-47
usage notes, 4-20, 4-30, 4-46, 9-7
USE command, B-12–B-13
USE keyword, 5-24
User Libraries field, F-6, F-13
user test scripts library, G-5
using File Allocation Utility, 5-43
using the File Allocation Utility, A-1
UTILITIES (option 5), 4-2, E-1

DDIO File Facility, E-3
display available memory (REGION SIZE), E-1
display file allocations (LIST ALLOCATES), E-2
Menu, E-1
Select Alternate Profiles (MERGE), E-5

V

Validate field, F-3, F-11
values

cross-referencing data, 3-7
displayed in Keep window, 3-7, 3-10
passed, 3-7
removing from Keep window, 3-10

variable, 1-4
content, 5-10

display in Keep window, 5-10, 5-12–5-13, 5-16,
5-21

monitoring, 5-10
new shared pool, B-10
show values next to data definitions, 5-12
values entered in log, 5-18

VCON, G-5
vontrol

program execution
using WHEN command, 5-4

VSAM, G-5
file status, 1-4
files, 9-3, B-4, B-17

VSAM files, 4-18
VTAM, with Batch Connect, 4-26–4-27, 8-10
VTAM, with Batch Connect under ROSCOE, 4-38
VTAM, with CICS connection, 4-56

W

Wait-For-Input (WFI) transactions, 7-11
BMP, 7-13
IFP, 7-13
MPP, 7-13

I-18 XPEDITER/TSO and XPEDITER/IMS COBOL User’s Guide
WHEN command, 4-54, 5-4, 5-10, 5-18
wide screen, G-5
working storage, 5-11, G-5
Workload Manager (WLM), 8-1, G-5
World Wide Web, Compuware address, xx

X

xcreens
Environments Menu

IMSPEM (option 10), 4-18
XDYNAMIC DD, 4-45
XINCLUDE, 4-49–4-50

DD, 4-30, 4-45
XOPTIONS DD, 4-45
XPDOC DD, 4-45
XPED command, 4-46–4-47
XPEDITER ISPF interface, G-6
XPEDITER/Code Coverage, 4-3, 7-5, 7-8, B-5, B-8,

B-13, B-17, B-19, B-21, B-25, B-28, B-32, B-36, B-40,
G-5

XPEDITER/IMS, 1-2, 1-6, 2-4, 4-1, 4-17, 7-1, 9-4, B-3,
B-25, B-30, B-34, B-40
debugging with, 7-1
environment options, C-3

XPEDITER/TSO, 1-1, G-6
Environments Menu, 4-16–4-17, B-1
execution operating modes

batch, 1-5, 4-20, 4-43, 4-46
interactive, 1-5, 2-3

intercepting
execution, 1-4, 3-3, 3-9, 5-10, 7-4, B-7, B-15,

B-23, B-27, B-35
transactions, 7-4, 7-8, B-15, B-22–B-23, B-26–

B-27
invoking, 4-2, 7-1
Primary Menu, 3-2, 4-1, 8-2

BATCH (option 3), 4-2
BULLETIN (option B), 4-3
CICS (option CS), 4-3
DEFAULTS (option 0), 4-2
EXIT (option X), 4-3
FADB2 (option F), 4-3
FILE-AID (option FA), 4-3
PREPARE (option 1), 3-2, 4-2, 4-18
PROFILE field, 4-16
STORED PROC (option 4), 4-2
TSO (option 2), 4-2, 4-16, 7-1
TUTORIAL (option T), 4-3
UTILITIES (option 5), 4-2

restrictions and warnings, 1-6
test screens

BATCHPEM (option 5), B-17
BMP/IFP (option 9), B-30
BMPPEM (option 11), B-38
BTS (option 4), 9-5, B-14
DB2 Stored Procedures (option 12), B-41
Dialog (option 2), 9-4, B-6
DLIPEM (option 6), B-19
IMS (option 3), 9-3–9-4, B-11
IMSPEM (option 10), B-34
IMSPEM (option 7), B-21
MPP (option 8), B-25
Standard (option 1), 9-3–9-4, B-4

XPHELP DD, 4-45
XPIMSDMP, 7-15

XPIN DD, 4-46
XPNULLXP, C-18
XPOUT DD, 4-45–4-46
XPPISPFT, B-7–B-8
XPSCRIPT DD, 4-45
XPSHOW DD, 4-46
XPSL000n DD, 4-45
XTASKLIB concatenation, B-8

	Figures
	Tables
	Introduction
	Manual Organization
	Intended Audience
	Accessing Other Products
	Notation Rules
	Related Publications
	Documentation Availability
	FrontLine Support Website
	Online Documentation
	World Wide Web

	Getting Help

	XPEDITER/TSO Overview
	Operating Environment Support
	Modes of Operation
	Interactive Mode
	Batch Mode

	Interactive Debugging and Testing Features
	XPEDITER/TSO Input and Output
	Types of Programs Supported
	LOGON Region Size Requirements
	Restrictions and Warnings

	User Interface to XPEDITER/TSO
	PF Keys
	Command Processing
	Lowercase Conversion

	Attention Key Processing

	Quick Sample Debugging Session
	Preparing the Programs
	Starting the Debugging Session
	Setting Breakpoints
	Displaying File Information
	Displaying Data Values
	Debugging Subroutines
	Analyzing Data Flow
	Tracing Logic Flow
	Monitoring and Reviewing the Execution Path

	Getting Started
	The XPEDITER/TSO Primary Menu
	Preparing Your Programs
	Converting Your Compile JCL
	General Settings Screen
	DB2 Precompile Step Screen
	CICS Translation Step Screen
	Compile Step Screen
	Linkedit Step Screen

	Starting an Interactive Session
	Using Profiles
	Invoking the Test Session
	Guidelines for Selecting an Environment

	Allocating the Required Files
	Allocating From the Test Screen
	Allocating With the ALLOCATE Command
	Usage Note

	Using XPEDITER/TSO Commands in Interactive Mode

	Starting a Batch Connect Session
	Processing the JCL
	Converting and Submitting the JCL
	Line Commands
	Primary Commands
	Connecting to a Job
	Editing the JCL
	Disconnecting the Terminal
	General Information About Batch Connect
	Using XPEDITER/TSO Commands in Batch Connect Mode
	Intercepting Abends in Batch Connect Mode
	Usage Note
	Batch Connect Under ROSCOE
	Processing The JCL
	Member Selection List Processing
	Establishing The Batch Connect Environment
	Converting and Submitting the JCL
	Line Commands
	Primary Commands
	Connecting To A Job
	Connection Security Check
	Editing The JCL
	General Information About Batch Connect
	JCL Conversion
	Using Batch Connect Under ROSCOE Commands in Batch Connect Mode
	Intercepting Abends in Batch Connect Mode

	Test Session Management Using Scripts
	Initial Script
	Test Script
	Post Scripts
	Abend Scripts

	Creating and Editing Scripts
	Saving And Using Generated Scripts
	Script Example
	Using Batch Connect Under ROSCOE Commands in a Script (Interactive)

	Starting a Session With Batch JCL
	Setting Up the Batch JCL
	Usage Notes
	Creating a Command Stream
	Specifying Multiple Debugging Sessions in One Job Stream

	Creating Batch JCL for XPEDITER/TSO Options
	Database Support (Including IMS/DB and IMS/DB With DB2 Testing Under TSO)
	BTS Support
	DB2 Support

	Test Session Management Using Scripts
	Initial Scripts
	Test Scripts
	Post Scripts
	Abend Scripts
	Creating and Editing Scripts
	Saving and Using Generated Scripts
	Option 1 - Batch Connect Under XPEDITER/TSO
	Option 2 - Batch Connect Under ROSCOE
	Script Examples
	Using XPEDITER/TSO Commands in a Script (Interactive)
	Using XPEDITER/TSO Commands in a Script (Unattended)

	Accessing Other Systems From XPEDITER/TSO
	Accessing File-AID for DB2
	Exiting File-AID for DB2

	Connecting to CICS

	Debugging Interactively
	The Source Display
	Using XPEDITER/TSO Commands
	Controlling Program Execution
	Commands That Control Program Execution
	Entering Program Control Commands
	Setting Before and After Breakpoints
	Using the INTERCEPT Command
	Resuming Execution With the GO Command

	Setting Conditional Breakpoints
	Using the GO n Command
	Using the COUNT MAX Command
	Using the WHEN Command
	Using the Inserted PAUSE Command
	Using the TRACE Command

	Inspecting Program Data
	Displaying and Modifying Program Variables
	Using the KEEP Command
	Using the PEEK Command
	The Log Entries for PEEK, KEEP, and Automatic KEEP
	Using the MOVE Command

	Displaying and Modifying Memory and Registers
	Using the MEMORY Command
	Using the GPREGS Command
	Using the TOGGLE Command

	Analyzing Program Logic
	Identifying Program Structure
	Finding All References for a Data Name
	Finding Aliases of a Data Name
	Finding Indirect References to a Data Name
	Finding COBOL Structures
	Finding a String IN COBOL Structures
	Using the EXCLUDE Command With FIND
	Using the FIND CSR Command
	Logging the Results of a FIND Command

	Tracing the Flow of Control
	Using the TRACE Command
	Using the SHOW PREVIOUS Command

	Monitoring Execution Coverage
	Using the COUNT Command
	Using the SHOW COUNT Command

	Monitoring and Reviewing the Execution Path

	Modifying Program Logic
	Bypassing Code With the SKIP Command
	Inserting Statements
	INSERT Processing

	Redirecting Logic
	Using the GOTO Command
	Using the MOVE Command

	Examining Files
	Using XPEDITER for DB2 Extension
	Browsing and Editing DB2 Table Data
	Analyzing SQL Statement Execution
	Inserting Program SQL Statements
	SQL Statements That Can Be Inserted in Your Program

	Expanding EXEC SQL and EXEC CICS Statements
	Debugging a Sourceless Program
	Accessing a Sourceless Main Program
	Accessing a Sourceless Subprogram
	Using XPEDITER/TSO Commands for Sourceless Debugging

	Creating Pseudo-Assembler Source
	Pseudo-Source Creation for a Main Program
	Pseudo-Source Creation for a Subprogram
	Debugging a Pseudo-Source Program

	Displaying Environmental Data
	IDMS
	DB2
	IMS
	VSAM

	Handling Run-Time Errors
	Displaying the Abend-AID Snapshot Report
	Browsing the Snapshot Report

	Viewing the Log
	Displaying HELP Information
	Analyzing the Problem
	Applying Fixes
	Obtaining a Memory Dump

	Debugging With XPEDITER/IMS
	Starting XPEDITER/IMS
	Debugging an MPP Program
	IMS Conversational Transaction Considerations

	Debugging a BMP/IFP Program

	What to Do When Intercepts Cannot Be Set
	Functions Supported
	Conversational and Nonconversational Transactions
	Response Mode and Nonresponse Mode
	WFI and Non-WFI Transactions

	Types of Programs You Can Debug
	Message Processing Programs
	Batch Message Processing Programs
	Fast Path Programs

	Using XPEDITER/IMS Effectively
	MPP Test Setup
	Scheduling Difficulties
	Stopping the XPEDITER/IMS Dependent Region
	Fast Path Caution

	Abends and Recovery Processing
	XPEDITER/IMS Detach Region Facility

	Debugging With DB2 Stored Procedures
	DB2 Stored Procedure Requirements
	Overview of DB2 Stored Procedure Support
	Starting an XPEDITER/TSO DB2 Stored Procedure Debugging Session Using Batch Connect
	Debugging a DB2 Stored Procedure
	Accessing the XPEDITER/TSO Setup Menu Screen

	Specifying the JCL
	Connecting to a Job

	Editing the JCL
	Debugging a Client Application and a DB2 Stored Procedure Together
	DB2 Stored Procedure Security Considerations
	Batch Connect Security Check
	DB2 Subsystems to Debug
	Optional Security Access Facility (SAF) Calls
	Security Exit

	Foreground Debugging of DB2 Stored Procedures
	Exiting an In-Progress Stored Procedure Test

	Debugging Programs With Special Conditions
	Checkpoint/Step Restart
	Scenario One
	Scenario Two

	31-bit Support
	Code Generator Support
	Optimized Code Support
	VS COBOL II Releases 3.0 and Above (COBOL 85) Support
	Mixed Language Support
	Subroutine Testing Support
	Database Support
	IDMS/DB, ADABAS, SUPRA, DATACOM/DB, System 2000
	IMS/DB
	DBT HSSR
	DB2

	Shared DL/I Database (DFHDRP) Support
	SORT EXIT Support
	PANEXEC Support
	Language Environment Support
	Usage Note

	Third-Party Package Support
	Global Handling Of Special Conditions
	Using MQSeries With XPEDITER/TSO

	Using the File Allocation Utility
	Accessing the File Allocation Utility
	Creating a New File List
	Editing an Existing File List
	Copying Existing File Lists, JCL, or CLISTs
	Saving a File List

	Using the Edit File List Screens
	Primary Commands
	Line Commands
	Using the COPY Command on Edit File List Screens
	Edit File List 1 Screen - DDNAME, DSNAME, and Disposition
	Edit File List 2 Screen - Space and Catalog Information
	Edit File List 2A Screen - SMS Parameters
	Edit File List 3 Screen - DCB Parameters
	Displaying File Parameters

	Converting JCL to a File List
	Things to Know About JCL Expansion
	Unsupported Keywords and Subparameters

	Types of Files That Can Be Allocated
	Existing Datasets
	New Datasets
	Dummy Files
	Temporary Files
	In-Stream Data
	Allocating Files to the Terminal
	SYSOUT Files
	Generation Datasets
	ISAM Files

	XPEDITER/TSO Environment Test Screens
	Standard Test Screen - Environments Menu - Option 1
	Dialog Test Screen - Environments Menu - Option 2
	Effect of Dialog Program Intercepts

	IMS Test Screen - Environments Menu - Option 3
	BTS Test Screen - Environments Menu - Option 4
	Hogan BATCHPEM Test Screen - Environments Menu - Option 5
	Hogan DLIPEM Test Screen - Environments Menu - Option 6
	Hogan IMSPEM Test Screen - Environments Menu - Option 7
	MPP Test Screen - Environments Menu - Option 8
	BMP/IFP Test Screen - Environments Menu - Option 9
	Hogan IMSPEM Test Screen - Environments Menu - Option 10
	Hogan BMPPEM Test Screen - Environments Menu - Option 11
	DB2 Stored Procedures - Environments Menu - Option 12

	Specifying Setup Options
	Setup Options Available Under XPEDITER/TSO Environments
	Setup Options Available Under XPEDITER/IMS Environments
	Using the RESTORE Command
	Common Setup Screens
	Load Module Libraries Screens
	Usage Note

	DDIO Files Screen
	Test Script Libraries Screen
	Log, Script, and Document Dataset Screens
	Data Set Disposition Screen After a Test

	DB2 System Name and DSNLOAD Libraries Screen
	PANEXEC Libraries Screen

	IMS Setup Menu
	IMS Parameter Lists Screen
	Using APARM Data from JCL

	IMS Load (DFSRESLB) Libraries Screen
	PSB and DBD Libraries Screen
	ACB Libraries Screen
	IMS Preload List Screen
	Logging and Recovery (IEFRDER) Dataset Screen
	IMS Monitor (IMSMON) Dataset Screen
	VSAM Buffer Pool Screen
	IMS Error (IMSERR) Dataset Screen

	BTS Setup Menu
	BTS Parameter Lists Screen
	BTS Load Libraries Screen
	MFS Libraries (Format) Screen
	BTS Output (BTSOUT Dataset) Screen
	BTS Punch Output (BTSPUNCH Dataset) Screen
	BTS Debug (BTSDEBUG Dataset) Screen
	BTS Work File (QIOPCB Dataset) Screen
	BTS Work File (QALTPCB Dataset) Screen
	BTS Work File (QALTRAN Dataset) Screen

	Hogan Setup Menu
	Hogan Activity Log (Monitor Dataset) Screen
	Hogan Report File (Print Dataset) Screen
	Hogan SNAP Dump (SNAPDD Dataset) Screen
	Hogan Formatted Dump (SYSPRINT Dataset) Screen

	Specifying Session Defaults
	The Defaults Menu
	Specifying PF Key Definitions
	Specifying Screen Colors
	Specifying Other Default Values
	Specifying User Profiles
	Using the MERGE Command
	Using the LOCATE Command
	Using the PROFILE Command

	Displaying Test Session Settings

	XPEDITER/TSO Utilities
	Displaying Available Memory (REGION SIZE)
	Displaying File Allocations (LIST ALLOCATES)
	DDIO File Facility
	CONVERT PROFILE
	CONVERT INCLUDE
	Selecting Alternate Profiles (MERGE PROFILE)

	Binding the Application Plan or Package
	Bind Facility Menu
	Bind Plan Facility Screen
	Bind Plan Setup Menu
	DBRM Libraries Screen
	Bind Plan PKLIST Setup Screen

	Bind Package Facility Screen
	Bind Plan Facility Screen for Long Names
	Bind Plan Setup Menu
	DBRM Libraries Screen
	Bind Plan PKLIST Setup Screen for Long Names

	Bind Package Facility Screen

	DBCS Support
	Terminal Support
	Program Support
	DBCS Fields on the Source Display
	Scrolling DBCS Data
	Scrolling Mixed Fields
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Scrolling DBCS Fields
	Example 6
	Example 7

	Manipulating DBCS Data
	Typing Over Data
	Example 8
	Example 9

	Inserting Data
	Example 10
	Example 11

	Deleting Data
	Example 12
	Example 13
	Example 14

	Moving Data
	Example 15
	Example 16

	COBOL-Structure Keywords
	Debugging a Client Application and DB2 Stored Procedure
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF004200610073006500640020006f006e0020007200650063006f006d006d0065006e0064006100740069006f006e00730020006f006600200044006f00760020004900730061006100630073002e0020002800530065006500200043006f006d006d006f006e005400430045006e0074005c0053004f004600540057004100520045005c005000720069006e007400200061006e00640020005000440046002000530065007400740069006e00670073005c006900730061006100630073005f0069006e007300740061006c006c0063006f006e006600690067002e007000640066002e0029002000440065007300690067006e0065006400200066006f00720020006f007000740069006d0075006d00200064006900730070006c0061007900200061006e006400200068006900670068002d007200650073006f006c007500740069006f006e0020007000720069006e00740069006e0067002000770069007400680020004100630072006f00620061007400200035002e00300020002800500044004600200031002e0034002900200063006f006d007000610074006900620069006c006900740079002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

